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CHAPTER 1

Introduction

Whole building energy simulation is used in many facets of industry, and found in

a wide variety of research fields. In industry, these simulation tools are used in

design optimization for minimizing cost, enforcement of standards and regulations,

and evaluation of possible building and system configurations. In research, these tools

are used to evaluate novel configurations and perform studies where the parameters

may be intertwined in various components within the entire simulation shell.

Typical whole building energy simulation programs include the ability to simulate

building zones, air systems, hydronic loops, electric power generation, among other

things which will vary between applications. The level of interdependence between

components varies, and the ability to model the interaction between components is

dependent on the assumptions used in developing the models and the design/structure

of the whole building energy simulation program shell.

1.1 Project Context: A Highly Integrated Foundation Heat Exchanger

Model

The primary target of the current research is development of a generalized and highly

integrated model for ground heat exchanger applications where the heat exchanger is

in close proximity to a zone. When the heat exchanger is laid in the excavation area

around the basement of a building, the configuration is referred to as a foundation

heat exchanger. Full details on the development of the foundation heat exchanger

model itself are available in Chapter 4.
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For standalone, or loosely coupled, foundation heat exchanger models, there are

limitations, which may include:

• A lack of feedback from zone heat balance calculations to the ground domain,

where the zone heat balance provides a boundary condition for the ground

through a heat pump or other system.

• A lack of feedback from the ground domain to zone heat balance calculations,

where the ground temperature provides a boundary condition for the zone heat

balance through a building surface.

• A lack of feedback to the central plant solution, where the fluid temperature re-

sponse in the heat exchanger provides a boundary condition to other equipment

on the hydronic loop.

Different models have been proposed, and are included in Chapter 4, however

none of them include a full integration between the three domains:

• Zone heat balance

• Ground domain

• Central plant/Hydronic loop system

To ensure this level of integration can be captured in adequate fashion, the simu-

lation shell must include certain prerequisites:

• A detailed zone heat balance

• A robust central plant simulation model

• A flexible connection between zone, air, and central plant components to allow

diverse heat exchanger applications to be handled accurately. This includes the

possibility of niche applications such as:

– One-tube per trench heat exchangers (run-around systems)

– Long heat exchanger runs, such as district heating applications, where the

delay in the system is considered
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The whole building energy simulation environment EnergyPlus is leveraged and

used as the shell for developing the new ground heat exchanger model. EnergyPlus

includes a detailed zone heat balance engine which has been validated in many cases,

including experimentally. EnergyPlus also includes an existing central plant simu-

lation model, however this model is lacking in robustness and flexibility. To ensure

the entire simulation shell is capable of providing a suitable environment for devel-

opment of the highly integrated ground heat exchanger model, a new central plant

model was developed and a transport delay study was performed with experimental

measurements to support modeling efforts. These comprise the three main aspects of

the current work.

1.2 Outline

The general context of this work is a hydronic system containing a horizontal ground

heat exchanger placed in the proximity of a building zone. This provides a focus on

the integration of ground heat transfer, hydronic system simulation, and the zone

heat balance. Within this context, the work is divided into three sections, each with

an individual chapter:

Chapter 2: Flexible Simulation of Controlled Pumping and Piping Sys-

tems for Whole Building Energy Simulation: A new hydronic loop solver was

developed and implemented as the EnergyPlus central plant system simulation model.

A key feature of this work is a demonstration of abstraction from physical systems.

The new modeling approach is referred to in this document as the Improved Conti-

nuity & Energy-Balance (ICE-B) model to distinguish from the existing EnergyPlus

loop solver algorithms.

Chapter 3: Evaluating Fluid Transport Delay in Central Plants for

Whole Building Energy Simulation: Transport delay in a horizontal ground

heat exchanger was experimentally measured and used to evaluate approaches to
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Figure 1.1: Dissertation topics and representation of integration points

model transport delay in the EnergyPlus central plant simulation model. Model

development was performed using this data as a validation source.

Chapter 4: Efficient Horizontal Ground Heat Exchanger Simulation

with Zone Heat Balance Integration: A new experimentally validated and com-

putationally efficient horizontal ground heat exchanger model was developed and

integrated with zone heat balance calculations.

The interaction between these three aspects is portrayed in Figure 1.1. The zone,

system, and plant are already coupled within the whole building energy simulation

environment, through the handling of zone loads and air system conditions. A major

focus of this research (Chapter 2) involves improving integration between the internal

component and system solver models of the central plant simulation, which is sym-

bolized as integration A on the figure. While the ground is often involved in both the

central plant simulation and the zone surface heat transfer rate calculations (floor,

basement), the ground model itself is typically not coupled between these domains.

The current work brings integration of the zone and central plant via the ground heat

transfer model, symbolized as B. In addition, the transport delay study investigates

an enhanced integration between the central plant and the air systems by capturing

additional transients in the simulation, symbolized as C.

1.3 Research Summary

Each of the three main topics provide different research, with both experimental

measurements and modeling efforts. While the previous section introduced the three
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topics individually, this section introduces the research in terms of the type of research

performed.

1.3.1 Experimental Work

An investigation of the effects of fluid transport delay manifestations in the context

of whole building simulation is covered in Chapter 3. As part of the research, exper-

imental data was measured to provide a data set useful for guidance, development

and validation for transport delay modeling. The experimental data uses horizontal

borehole ground heat exchangers undergoing thermal response testing. The main fea-

ture of the data set is a high time resolution, with temperature, flow rate, and heat

rate being sampled every second during the initial period of testing. This resolution

allows the transport delay modeling work to be evaluated with a higher degree of

certainty, as the transport phenomena timing is captured accurately.

1.3.2 Modeling Efforts

Each of the major topics in this research includes a modeling aspect. For the central

plant simulation model, modeling work includes:

• A new solution algorithm to solve the system of state points, properly simulate

components, provide a resultant flow distribution (operating point) in the sys-

tem, and respect the interaction between pump model operation and the rest

of the flow system.

• A redesign of the interface between component models and the new loop solution

algorithm.

For transport delay, the modeling work includes:

• Development of a simulation testbed, to allow investigation of transport mod-

eling work in an isolated environment, and to evaluate the suitability of exper-

imental measurements.
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• Implementation of an alternative transport delay model in the whole building

energy simulation tool EnergyPlus, along with an evaluation of the significance

of the delay model.

For the ground heat exchanger model, the modeling work includes:

• A generalized grid creation algorithm that allows for pipes and other domain

features to be placed flexibly inside a Cartesian domain, and focuses computa-

tion in areas of high activity.

• Interaction between simulation domains, including the ground, zone heat bal-

ance calculations, and a hydronic system simulation model, including the effects

of different time-scales.

• Interaction between coordinate systems, with a radial grid system in the near-

pipe region.

• Validation of the model against numerous experimental data sets, as well as

against an analytical solution in a simplified configuration.

• Implementation and validation of a two-pipe u-bend borehole heat transfer

model inside the base model shell.

1.3.3 Unique Contributions

The unique features of this work include:

• A continuity & energy balance-based piping and pumping system simulation

model that allows superb flexibility in terms of component placement, while still

providing a robust, reliable model to be used in practice in system evaluation.

• Experimental measurement of transport delay in a horizontal borehole ground

heat exchanger system.

• A generalized buried pipe heat transfer model applicable in a diverse set of

applications.
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• A computationally efficient approach to ground heat exchanger simulation.

• Integrated ground heat transfer model, zone heat balance, and hydronic. system

simulation models
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CHAPTER 2

Flexible Simulation of Controlled Pumping and Piping Systems for

Whole Building Energy Simulation

Abstract

Whole building energy simulation tools are used to predict energy related
features of all aspects of a building. In many cases, this includes a fluid
loop, be it air, water or otherwise. Characteristics of these fluid systems
are often investigated to optimize a design for minimizing energy use or
provide insight into the interactions with other systems. An accurate
simulation of pumping and piping fluid systems traditionally requires so-
lution of a detailed pressure network, often utilizing a form of Bernoulli’s
equation. In addition to pressure-flow effects, other simulation elements
include thermal activity, controls, a diverse set of possible components
and complex topologies or configurations.

While a detailed pressure network solution provides an accurate flow dis-
tribution, certain characteristics of whole building energy simulation make
the full network solution unattractive. These include the required input
base of a detailed pressure network solution, and solution divergence that
can come from poor initialization and solver instability. A new simulation
model has been developed which does not rely on a full network solu-
tion. In place of the pressure network for flow resolution in the system, a
predictor-corrector approach is employed. This approach provides a more
robust simulation and reduces the required input parameters over tradi-
tional flow network solution algorithms. The new simulation model is
termed the Improved Continuity & Energy-Balance (ICE-B) model, and
is a replacement for the existing EnergyPlus fluid loop model. The ICE-B
simulation model is demonstrated against a number of isolated test cases
and “real-world” examples which show the model’s ability to produce
quality results and also the effort and process involved in abstracting a
physical system using model paradigms.
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2.1 Preliminary Discussion

The EnergyPlus central plant simulation model was first described by Fisher et al.

(1999b). Several features from that paper still exist in the current model, however the

simulation model has also evolved since the publication of that work. The new plant

design proposed in the current work, termed the Improved Continuity & Energy-

Balance (ICE-B) model, improves the capabilities of the overall plant simulation in

terms of flexibility and robustness. The new plant simulation includes the following

features:

• A novel plant loop solver (solution algorithm)

• Idealized control flow distribution algorithms

• Flexible interface between component models and the loop solver

• A robust overall system convergence algorithm

This chapter in laid out in the following fashion:

• This preliminary discussion presents the scope of the work. The physical system

model is defined, followed by nomenclature and underlying assumptions.

• Discussion of different modeling approaches is included in a literature review.

(Section 2.2)

• The simulation approach is described in a piece-by-piece fashion to build an

understanding of the overall simulation model and contrast the existing and

proposed models where applicable. (Section 2.3)

• Two “real-world” chiller plant systems are modeled, with an emphasis on the

abstraction required to model these systems appropriately. (Section 2.4)
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2.1.1 Staging

The methodology section of this chapter includes a detailed development of the plant

simulation model. To enable an efficient discussion, the following sub-sections in-

troduce different aspects of the simulation model, to stage the actual methodology

discussion. The first sub-section (2.1.2) introduces the plant simulation in the context

of a whole building energy simulation program. The second (2.1.3) describes the phys-

ical system that is to be modeled. The third (2.1.4) defines simulation state points,

and how thermodynamic state points relate to the simulation model and solver algo-

rithms. The fourth (2.1.5) is a special discussion focused on variable speed pumping.

The final sub-section (2.1.6) provides an overview of the expectations of the model.

2.1.2 Whole Building Energy Simulation

Whole building energy simulation focuses on predicting the energy use of a building

and its systems. These systems include those required to condition the building, but

also include electrical generation measures among other things. Any of these systems

may ultimately interact with a central plant simulation model. This “central plant”

is a broad term that, for this work, represents fluid loops which are relevant to whole

building simulation, including hot water loops, chiller plants, condenser loops, as well

as heat recovery loops.

Three domains of a whole building energy simulation model which are utilized

most frequently are the zone, air system, and central plant. The central plant model

provides an ultimate link to the environment for many large systems through the

use of, for example, air-cooled chillers, cooling towers, or ground heat exchangers.

This link to the environment plays an increasing role as building energy is reduced,

since it provides a constraint on the amount of heat transfer available for a given set

of conditions. If the central plant is undersized and not able to reject the demand

imposed on it, the result will be (for a chilled water system) an increase in the
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water temperature. As a result of increased chilled water temperature, the air system

may not be able to meet the zone demand, impacting both thermal comfort and

performance codes and standards.

An accurate central plant simulation model is a key part of an accurate whole

building simulation model. However, as a part of a whole building energy simulation

program, there are other facets to consider. The most prominent is the necessity

for a robust simulation environment. The whole building energy simulation program

and the underlying models are used by engineers and designers who may not have

the tools to “debug” a problem with an underlying model1. At the very minimum, a

simulation model must be able to provide realistic results that ensure mass and energy

is conserved within the system, and provide meaningful assistance as procedural errors

are encountered. The level of accuracy above this is dictated by the requirements and

assumptions of the model.

Within a whole building energy simulation program, a plant simulation model may

be used at varying levels of detail for generic simulation, building design, and research

purposes. To accommodate this, simulation models often allow a varying level of

input detail. This allows early-design work to include “big-picture” optimization and

system evaluation, while also providing the means for performing detailed simulation

with well-defined parameters such as in validation studies. In terms of plants, the

early design work may include optimizing chilled and hot water loop configurations.

Generalized flow network solvers require full inputs of pressure characteristics and

control strategies to be employed for even simple simulations. The simulation model

presented here balances flexibility with an understanding that minimizing the input

burden maximizes the usability for many cases.

1This statement does not cover debugging problems related to erroneous user-input.
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2.1.3 Loop Topology

To develop a system simulation model for a fluid loop such as a central plant loop, a

clear definition of the physical and model topology must be established. Generalized

solution algorithms may be capable of handling nearly any possible topology, however

they have other limitations which detract from their usefulness. The new simulation

model is based on the fixed set of topology rules that have been defined in EnergyPlus

and used in the existing modeling approach, and were originally designed as described

by Fisher et al. (1999b). These rules are flexible enough to handle many variations in

plant systems, while including assumptions that ensure reliability from the simulation.

This discussion provides the system topology definition, and is applicable to both the

existing model and the new (ICE-B) model, unless otherwise specified.

The EnergyPlus topology definition begins with a typical chilled water plant sys-

tem, consisting of chilled water coils, chillers, and related pumping systems as shown

in Figure 2.1a. The diagram shows primary pumping with optional secondary pump-

ing accompanied by a common leg. This generic topology can be found in hot water

systems also, as well as condensing systems. The use of coils and chillers in the di-

agram is intended to keep the discussion grounded to a certain level of physicality.

The diagram shows two chillers and two coils as one possible configuration, however

supplementary components are implied by the use of rays2. One facet that is missing

from the diagram is the use of “non-pumping series” components, such as multiple

chillers in series, or the addition of an economizer in series with the other components.

These configurations are included in both the existing and proposed models, although

the existing model had difficulty handling these cases due to improper communication

between the system and component simulation models.

The system schematic is now portrayed differently without affecting the loop topol-

ogy itself, transforming from Figure 2.1a to Figure 2.1b, with the pump symbols

2These rays, or arrows, are used on diagrams throughout this topology discussion as a represen-
tation that other components may be placed, but are not shown, on the current system.
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(a) Simplified, common representation of a
physical chilled water loop system

(b) Chilled water loop system in model
visualization

Figure 2.1: Initial abstraction of a common chilled water loop system into model form

implying flow direction. The coils and remainder of a “demand side” are drawn as

a parallel set of components with an inlet splitter preceded by an inlet leg and an

outlet mixer followed by an outlet leg. The chillers which represent the “supply side”

components makeup a similar path on the opposite side.

Component placement is more flexible in the ICE-B model than the existing model

because of the solution algorithms in place in the new model. The diagram in Fig-

ure 2.1b shows pumps placed at each side of the loop, on the inlet leg, followed by a

series of components in parallel. Many component types are available in the existing

EnergyPlus component model library, which is one reason EnergyPlus was selected

as a development platform. Although the pumps are placed on the inlet leg of the

loop in Figure 2.1b, the ICE-B model allows pumps to be placed flexibly around the

loop. In the existing model, pump placement is limited to very specific locations,

which may increase the difficulty in abstracting a physical system into the simulation

model form. Pump placement in the proposed model has one limitation:

Each independent flow path may have at most one pump component.

This limitation is due to the pump model specifics, which are covered in sec-

tion 2.3.3. In addition to pumps, the components which are shown in the parallel

sections may also be placed in the entrance and exit legs surrounding each parallel

set of components. One key application of general component placement is the use

of an economizer, in which a heat exchanger may be installed in a variety of places in

13



the loop to provide improved efficiency with a carefully selected economizer approach

temperature. In the existing model, these economizers could be placed at essentially

any location on the loop, however they could not be controlled properly because the

loop solution algorithms did not communicate properly with the component model.

In the ICE-B model, the economizer is provided proper boundary condition data to

allow it to be utilized more reliably.

The symmetry of the system is clear as shown in Figure 2.1b. The discussion will

now be narrowed to an individual “loop-side,” either the demand or supply, with

the common pipe set aside temporarily. By generalizing the loop-side to contain any

type of components in parallel, the resulting loop-side is shown in Figure 2.2a. This

loop-side consists of an inlet section, followed by a series of parallel sections, followed

by an outlet section. In the existing model, each of these loop-sides used individual

solution algorithms: a demand solver and a supply solver. In the ICE-B model, the

solution algorithms are generalized to accommodate any single loop-side, improving

code reuse and reducing the code maintenance burden. Figure 2.2a includes the

following features:

• The inlet leg contains a pump, which may be common for many systems, but is

not a required part of the topology for the ICE-B model. Instead this leg may

contain any number of other components, including no physical components at

all3. In the existing model, there are much stricter restrictions on the placement

of pumps and other components, especially on the inlet leg of each loop-side.

• The parallel section may contain any number of paths; two are explicitly shown

on the diagram with the generalization being implied to be greater than two.

In addition, the diagram does not show that the number of parallel paths can

be one. This would result in all loop-side components being in series.

• Each parallel path may actually contain any number of series components.

3A connector object is required to act as a placeholder for flow segments without any components.
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• The outlet is similar to the inlet leg and may contain any number of series

components.

If we introduce the term branch to represent a collection of series components,

then the topology of a single loop-side can be summarized succinctly:

1. An inlet branch

2. A collection of one or more parallel branches

3. An outlet branch

(a) Component form, with a pump and parallel components (b) Generic branch topology

Figure 2.2: A single loop-side in model arrangement

For simulation purposes, the loop-side shown in Figure 2.2a is now broken into

individual branches as shown in Figure 2.2b. The series and parallel sections are

connected using a flow splitter and a flow mixer. The assignment of a predefined flow

splitter and flow mixer in the system is inline with a key assumption in place in this

simulation model:

The flow direction in each branch of the simulation model is predefined,

stemming from the assumptions inherent in the abstraction of the original

physical system into simulation model form.
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The predefined flow direction is certainly a major assumption of the system, and

this will be leveraged in developing the system solution algorithms. While components

can be placed flexibly around the loop, having a predefined flow direction allows

the solution algorithm to be robust and focus on variable flow distributions without

needing to solve flow direction simultaneously.

The form shown in Figure 2.2b is now reoriented into Figure 2.3. The inlet and

outlet state points are shown on the diagram (ψi), with the inlet being a boundary

condition for the loop solution algorithms. In addition, the flow direction is added to

the diagram to be clear that this is a predefined part of the system simulation model

assumptions moving forward.

Figure 2.3: Final visualization of the loop-side to be solved by the simulation model

The inlet and outlet state points are shown in Figure 2.3 to provide a broad view

of the system. However, each branch inlet and outlet, and even intermediate points

on branches (for branches with multiple components), are all state points to be solved

by the simulation.

2.1.4 State Point

A thermodynamic state point represents the state of a fluid at any point in space and

time. A thermodynamic state includes fluid pressure, temperature and density, as well

as perhaps other properties depending on the fluid or mixture. In the simulation, there

is additional metadata which can be attached to a fluid state. A detailed description

of the original state point design for EnergyPlus is found in Fisher et al. (1999b).

Some additional features include:
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• Fluid Mass Flow Rate: While this is not a property of the fluid, it is a property

of the system at a given point. Simulations which do not capture transient

flow phenomena do not require this to be defined at every intermediate point,

but only once per independent flow path. However, there are development

and maintenance reasons to keep this data stored at intermediate points, most

notably the ability to debug individual component models and ensure continuity

throughout the system.

• Historical Data: While the current fluid state is defined from a set of properties

at each point, there are many component simulation models, along with the

system solution algorithms themselves, that consider thermal history. While

individual models could store this data, it is more useful to store it in a central

location. While the existing simulation model had some historical data saved,

the new model added a number of historical metadata to allow improved control

of system convergence.

• Solver Metadata: The proposed ICE-B simulation model added several vari-

ables to the previous simulation state point structure. The most notable is

the requested mass flow rate. This is used by a component to issue a request

for flow to the solver algorithms, and also in convergence monitoring. (See

section 2.3.2.2.)

Since the fluid half-loop consists of a collection of components connected with

these state points, solving the system implies solving for the state point properties

for the entire half-loop. This is a core feature of the solution algorithm development

as described in following sections. Note that there is a distinction between thermo-

dynamic state and flow properties vs. historical/metadata information, which need

not be solved.
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2.1.5 Variable Speed Pumping

The solution of thermal piping systems is nontrivial, even for simple systems. Certain

component attributes make the solution much more difficult, including the simulation

of variable speed pumping. Variable speed pumping systems are widely accepted in

low energy plant applications and allow the system to reduce operating conditions

under a part load state. While there are simulation tools capable of simulating vari-

able speed systems, there are special difficulties encountered in providing them in a

generalized and robust tool, including how the increased system dimension is handled,

along with the increased input requirements. The existing EnergyPlus central plant

simulation model included variable speed pumping, however there were significant

limitations, including the ability of variable speed pumps to ramp down under all

part-load conditions due to a lack of communication between the pump algorithms

and the loop solution algorithms. The new ICE-B model uses enhanced request and

flow distribution algorithms to ensure variable speed pumping can be simulated prop-

erly, even with primary-secondary or dedicated pumping systems.

2.1.5.1 System Dimension

A constant speed pump in a pressure network will operate at a fixed rotation rate re-

sulting in a flow that varies according to the system head. A variable speed pumping

system varies the rotation rate in order to minimize energy use under part load condi-

tions. This speed must be controlled, typically by a pressure (or pressure differential)

measurement.

Neither the existing, or the new ICE-B plant simulation model utilize a full pres-

sure network simulation. Without a pressure network, pump models are much dif-

ferent from those used in generalized pressure solutions. Including variable speed

pumping into the simulation environment introduces additional variables which must

be solved, increasing the system dimension. This may also introduce unstable inter-
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actions between components as the pump as well as individual components attempt

to resolve to a minimum flow condition while still meeting loop demands.

The pumping model implemented in the simulation utilizes a technique that allows

variable speed pumps to “float” in the system. Instead of driving the flow, they simply

respond to the demands of the loop. This is in contrast to constant speed pumps,

which tend to provide flow regardless of demand.

2.1.5.2 Input Requirements

In a simulation, the addition of variable speed pumping requires additional or modified

controls. For a full pressure network simulation tool based on a generalized equation

solver such as Modelica (Modelica Association, 2010), a control profile must be added

to the simulation to ensure it is stable throughout the simulation. The simplified flow

network solution and the interface between components (including pumps) and the

solution algorithms in the proposed work provides a simple mechanism for allowing

variable speed pumping, with only a minimal increase in the input specification.

2.1.6 Scope and Purpose (Assumptions)

Solving the system of state points and underlying governing equations can be per-

formed using a variety of approaches. The level of accuracy and detail provided by the

solution algorithm is often tailored to a specific problem. In some pressure-network

based piping system solvers, thermal conditions may be ignored to focus attention to

the pressure distribution. This does not indicate that the fluid temperature in the

system does not vary, it simply decouples that problem from the pressure distribu-

tion, and essentially implies a trivial solution to the fluid temperature problem. For

the applications of the current model, this assumption is not valid. As the current

simulation model is implemented within a whole building energy simulation program,

one major desired outcome of this model is energy use. This emphasizes the solution
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of the flow and temperature distribution in the system. The pressure network is the

fundamental driving force of a physical system like those covered by this simulation

model. However, the simulation model is able to disconnect the pressure network from

the flow and temperature distribution solution, and there are significant benefits:

• Reduced dependency on detailed pressure inputs

• Improved simulation robustness

• Implied underlying assumptions for prescribed flow direction (section 2.1.3)

Ultimately, the goal of this work is not to produce another pressure network solver,

which has been done many times before. Instead, the goal of this work is to create a

fluid loop simulation model that uses ideal control assumptions, continuity and energy

balance techniques and rule-based flow distribution to provide a robust environment

that does not rely on detailed pressure-network information to solve the governing

equations. The model is developed based on the loop topology rules already in place

in EnergyPlus, but introduces enhanced flexibility in how components are placed

and controlled compared to the existing model. Compared to the existing model,

the new model also has improved convergence monitoring and interaction with other

simulation domains such as the air-system components and system simulation models.

2.2 Literature Review

There are many methods available for representing a physical pumping and piping

system or central plant as a simulation model. An initial review is provided for generic

pumping and piping system solution techniques (2.2.1) to lay the baseline for sections

following related to thermally active systems such as central plants. The solution of

these thermally active systems is classified in two main categories: lumped energy

balance representation (2.2.2) and algorithmic solution techniques (2.2.3).
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2.2.1 Pressure-based Flow Networks

The most abstract flow model is a numerical solver that does not directly provide a

physical modeling layer. An example is the Modelica (Modelica Association, 2010)

language format which has been implemented in a number of programs, in both

private industry and open-source forms. In these applications, the level of abstraction

from physicality is generally low (physics are modeled in detail), requiring a higher

level of detail in model code, inputs, and complexity. Libraries, including the open-

source Buildings library from Lawrence Berkeley National Laboratory (Wetter, 2009),

provide a portion of the overhead for particular languages/applications.

Pressure-based flow network models generally solve a form of Bernoulli’s equation.

For steady incompressible flow and negligible viscous friction, this equation is provided

as:
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By ignoring the elevation in the system, including the mechanical energy ex-

changes, and reformulating in terms of the pressure head, the equation is offered

as:
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From this point, terms can be added or removed from this energy balance based

upon further assumptions and additional system physics modeling. Whatever the

formulation, mass and energy balances are enforced, in either steady or transient

formulation, to result in a flow network distribution.

The use of a flow network has an extensive set of applications, across a wide variety

of industries. As such, the literature is filled with simulation and case studies. Many

solutions are based on the method designed by Cross (1936) or linear theory described

by Wood and Charles (1972). Collins (1980) described these along with the Newton-
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Raphson technique in the context of guiding engineers toward a suitable approach

for solving piping network problems. Todini (2006) performed a detailed analysis of

various numerical algorithms to solve piping networks, evaluating the iteration cost

and dimensionality of each method. Oke (2007) used statistical analysis to evaluate

the three major simulation techniques.

Gay and Middleton (1971) utilized graph theory and matrix transformations in

creating a diakoptics solution to the network piping problem, which is claimed to

produce a faster solution. Higson (1984) justified the use of linear theory to solve

piping networks with nodal heads, while Haghighi et al. (1992) applied linear theory

to a variety of network components to allow for more generalized solution capabilities.

Within an iterative piping network solution, Lang and Miller (1981) described the

benefit of using a smooth friction factor correlation to speed up and stabilize conver-

gence. HaktanIr and ArdIclIoglu (2004) created a pipe network solution algorithm

using a numerical implementation of the Darcy-Weisbach friction factor expression.

Preece and Ti (1989) utilized a fictitious branch during network solution to solve an

equivalent network under mixed boundary specification conditions. Nielsen (1989)

exercised various numerical formulations to show stability and convergence, showing

that it is better to have a pipe-discharge based flow equation than head-based. Lopes

(2004) performed a specialized development and implementation of the Hardy-Cross

method. A novel approach was used by van Zyl et al. (2008) to approximate the pipe

head loss relationship using a gradient method for solution.

Boulos and Wood (1990) used an explicit formulation of pipe network equations

which allowed the system to contain a variety of constraints, such as required flow

through various legs of the system, or a required head at a given node. Boulos and

Altman (1993) applied explicit formulation to systems with closed network legs to

allow simulation of varying topology during system operation.

Mohtar et al. (1991) created a simulation program using a finite element model
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of different pipe network components that allowed for generalized network solution.

Kohlenberg and Wood (1994) simulated and validated a detailed power plant flow

network simulation. Zhu et al. (2012) utilized a dense three dimensional finite element

approach, directly solving the Navier-Stokes equations for the simulation of a pumping

station.

Berghout and Kuczera (1994) used an iterative approach to network simulation

using linear programming techniques, capable of simulating components that do not

have a fixed pressure head-flow relationship.

Nazeer et al. (1999) used a detailed mathematical development to solve a flow

network with a centrifuge, leveraging sparse matrix techniques in the solution algo-

rithm. Leung et al. (2000) used flow network analysis along with safety and failure

estimation to predict serviceability and maintainability of a system. Estrada et al.

(2009) described advances to a network model, including specialized water irrigation

components, which is solved with a matrix solution. Ie et al. (2001) developed a simu-

lation architecture with two sub-layers: a hydraulic analysis to calculate the response

of the flow system, and a controls sublayer to implement system controls. Hodge

(2006) utilized proprietary software to solve piping network problems in the context

of engineering education.

This review shows that the simulation of piping systems using a flow network is

a diverse topic, with many different possible formulations. Much research has been

done on this topic to make the models more applicable with improved reliability,

flexibility, and computational efficiency. These are important characteristics for sim-

ulation models in whole building energy simulation. For thermally active systems,

and especially controlled thermal systems, additional simulation layers are required.
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2.2.2 Energy Balance Approach

The energy balance approach is based on a level of abstraction where the flow network

need not exist in the model. Instead, the energy exchanges in the system are based

solely on a movement of heat between components and loops. Initially, a load can

be applied to a fluid loop as a demand. The thermal energy equipment on the loop

may be as simple as a single chiller or heat exchanger, for example. If the equipment

performance model is based solely on loading conditions (design and actual), indepen-

dent of fluid approach conditions, then the part load ratio can be determined directly,

without the need for a fluid simulation. Consider the following generalization as an

example:

PLRe−b =
λactual
λdesign

(2.3)

ε = f (PLRe−b) (2.4)

where:

PLRe−b :Generic part loading of a system using the energy-balance

λ :A system parameter, such as heat transfer rate

ε :System efficiency, used for energy consumption calculations

The equipment energy usage is then calculated by this part load ratio and perfor-

mance data. If the equipment is connected to other loops, the response on the other

loops can be calculated using the same approach. Pumping power can be estimated

in a similar fashion.

The lack of a fluid loop eliminates the possibility of capturing temperature depen-

dent phenomena on the loop, including approach temperature dependence of compo-
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nent efficiency. If the components are assumed to operate at design flow rate then

there is no possibility for variable speed pumping energy savings. Controls are diffi-

cult to mimic in such cases because in a real plant where it will operate on a setpoint

temperature, there may be cases where the plant may be in a dead-band condition.

However, this cannot be simulated in a fluid-less simulation. There is also a lack of

specialized feedback from the loop to the other components, for example the possibil-

ity of temperature dependent economizer operation is eliminated. While the design

capacity may be used as a limiting situation for undersized plant systems, any fluid

temperature limits cannot be addressed. This method lacks the ability to feed useful

temperatures back to the coils or other demand equipment to calculate proper heat

transfer rates for demand equipment.

While this method has limitations, it also allows for a relatively small input foot-

print. Design values, part load coefficients and power calculation coefficients (or

parameters) can be used to get a first-order approximation of plant energy use. In

addition, simple control strategies can still be used in order to perform load dispatch

and component staging. This can allow a very high-level view of the effects of energy

savings available in optimizing control strategies, and this simulation can be driven

with a building load profile to create a suitable prediction.

The building simulation program BLAST (Witte et al., 1989; Taylor et al., 1991)

included an integrated simulation approach for zone, air systems, and plant systems

simulation, which utilized a form of this energy balance approach. The literature

shows that a majority of other thermally active system simulations are also based on

an energy balance approach, as described next. This is an expected conclusion, as

these methods do not require the overhead of a flow simulation while still provide an

approximation of the energy effects.

A simulation model by Braun (1992) used an energy balance approach to optimize

chiller and ice-storage strategies by creating a simple representation of the chiller, ice
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storage model, fan and coil, cooling tower, and control strategies. The power for the

entire cooling plant is a function of chiller load, ambient wet-bulb (for the cooling

tower model), and the chiller supply temperature; along with a set of empirical coef-

ficients. The chiller supply temperature is approximated based on ice storage mode,

bulk thermal storage temperature (assumed constant), and effective heat capacitance.

The models are driven by a set of building loads, and use a number of design condi-

tions for the system including required flow rate. This provides an example of using

a simplified approach to perform high-level optimization before rigorously modeling

the detailed system. Braun (2007) provided an optimization of control strategies

for hybrid chiller plants by creating simplified models of each component and then

optimizing the chiller sequencing along with other attributes.

Numerous other optimization studies have apparently used a simple energy bal-

ance approach4. This is again expected as optimizations which take many trials

benefit (in terms of computation burden) by using the simplest simulation approach.

Chen et al. (2007) utilized a set of empirical regression based models to provide

a representation of a central plant for creating a plant optimization program and

optimizing a campus chiller plant. Hydeman et al. (2002) used the BLAST simula-

tion program to create loads and created a standalone spreadsheet implementation

of a plant model to evaluate fan speed control requirements for standards develop-

ment. Nelson (1999) described a simulation study of a primary/secondary chilled

water system addressing physical phenomena such as load degradation on time due

to equipment age, however the system simulation model was not described in great

detail. A simplified plant simulation was created by Sakamoto et al. (1999) and used

within a genetic algorithm based optimization for district heating and cooling plant

operation. Wang et al. (2007) used a chiller component model inside an optimization

for chiller plant operating strategies. Sun (2010) optimized control strategies in a

4Not all sources were fully clear on modeling details, but the context implied that an energy
balance approach was utilized.
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multiple chiller plant simulation model.

King and Potter (1998) demonstrated an unusual approach to network simulation.

A series of plant component models were developed for optimizing ice storage control

strategies. A set of plant operation equations was presented. The equations to be

solved at any given condition varied. A table in the reference lists which equations

were solved for each system condition, and the variable being solved for in each

equation. The equation system varied significantly within the same simulation model,

based on the current operation mode. This reference demonstrated that even within

an apparently energy balance based approach, different scenarios lead to a different

system of equations and solution strategy. Essentially a template was set up for each

condition.

2.2.3 Algorithmic & Templates

Energy balance styled central plant simulation models are often developed for a sin-

gle or minimal set of possible configurations. This restriction allows for a simple,

well-defined system of equations, suitable for use within an optimization and to per-

form first-order prediction of overall energy use. The DOE2 whole building energy

simulation program demonstrated an approach where a building simulation program

included a number of common configurations, and allowed the user to make minor

changes to the components, but not affect loop topology or overall control strategies.

Hunn (1979) provided a comprehensive introduction to the design and capabil-

ities of the initial release of the building simulation program DOE2. The program

consists of four subprograms. The loads subprogram utilizes a zone temperature

which is assumed to be a known value and is used in load calculations. The systems

subprogram performs the simulation of building air systems, and also post-processes

the zone temperature to approximate conditions where the system did not precisely

meet the building load. The systems subprogram included 16 pre-programmed space-
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conditioning systems, allowing minimal input for a majority of simulation needs, but

limiting the usability in novel applications. A plant subprogram performed the sim-

ulation of central plant equipment, while an economics subprogram processed the

resulting energy use through economic calculations. Buhl et al. (1985) described

a number of new features of the DOE2 simulation engine, including improved co-

generation handling in the central plant simulation. Bahel et al. (1989) validated the

simulation program DOE2.1A against measured data and compared to the capabil-

ities of a main-frame simulation program available at the time. Pasqualetto et al.

(1998) also performed a number of tests with DOE2.1, including inter-model com-

parison and empirical validation. Sekhar and Yat (1998) used DOE2.1E to compare

a number of air-conditioning systems in a large office building, including a chilled

water plant. Tian et al. (2009) used DOE2.1E as a baseline in developing a model of

a high performance building, then used this baseline to build a more advanced model

in EnergyPlus (Crawley et al., 2001), including features that were not possible in the

baseline.

For a majority of building simulation scenarios, the central plant design may be

based on standardized configurations that have been proven successful in industry.

While every configuration will differ by required equipment capacities and design

flows, this template approach allows the user to quickly select a configuration, input

a limited amount of data, and predict a reasonable response of the system. For model

development, a benefit of this template approach is a well-defined causality within

the system. With a preset topology, the embedded controls have a well-defined set of

actuation points. Common features may be difficult to implement including variable

speed pumping due to the highly predefined interactions between system components.

Template approaches are useful for a majority of standardized configurations.

However, templates are not suitable for novel configurations or novel control strate-

gies, as a new template must be created for each new configuration. Systems which
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are tightly coupled from the zone to the air system, through the central plant, and

finally back to environmental (condenser) heat transfer equipment are also expected

to have difficulty due to the generalized and coupled nature of the system. A more

general approach must be in place to simulate novel and coupled systems.

2.2.4 Existing EnergyPlus Model

The existing simulation model which is used in EnergyPlus was described by Fisher

et al. (1999a). Since then, many changes have been made as the program has evolved

to accommodate new systems and applications, as well as an ever-increasing and

diverse library of component models. Fisher et al. (1999a) described the system

simulation model, how components are called by a manager interface, and how the

solution methodology allows for a generalized component topology which then defines

the type of system being simulated.

The core concepts of the original design such as the loop topology and disconnected

loop-sides are being used in the new ICE-B model, although many advances are made

in terms of component flexibility and simulation robustness.

2.2.5 Discussion

Template simulations provide usability for engineers and designers to simulate stan-

dardized systems. The input requirements for such systems are generally limited to

design conditions, which further increase the usability. Since the systems are well-

defined, testing can be performed to ensure that the solution is robust over a great

range of conditions. In contrast, generic numerical solvers provide the ultimate in

flexibility for experienced researchers investigating novel configurations and complex

control systems. The input requirements will generally be higher because more phys-

ical phenomena is simulated. For flow network solutions, pressure characteristics are

required for each independent flow path, at a minimum. For controls, the input
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requirements will differ greatly between control strategies.

An alternative approach utilizes predefined template flow paths and control con-

figurations, however uses an underlying generalized solver to calculate state variables

and predict the system response. This is an important use of such solvers, but relies

on an intermediate layer, or application. This application could be intelligent and

develop these templates, but expose only certain parameters of the system, limiting

the possibility of numerical problems. In addition, the errors that may be encoun-

tered in the abstract numerical solver could be given context with this intermediate

physical layer. The program would be able to interpret these errors and provide useful

information for fixing the error. Obviously this would differ in every application, but

consider an example as the difference between:

Error: Instability detected in block 3;

Check constraints

and:

Error: Loop flow rate out of bounds;

Check design flow for components A and B

The first form exemplifies the output of an abstract numeric solver. The second

form may represent the output from a hybrid solver/template, where the error can

be interpreted much better by users. This idea blurs the definition of a template

system, as the key is whether or not the underlying solver is a template, or if the

inputs are merely limited to template formulated combinations. The current work

does not use predefined templates, instead allowing a high level of flexibility in terms

of component placement/loop topology, and controls, with the topology only limited

to the form shown in Figure 2.3. The current work does not utilize a generalized
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solver to solve the system of resulting equations, but instead relies on a predictor-

corrector mechanism, in conjunction with a flow-wise solution algorithm to solve the

system response and perform controls operations (see section 2.3).

2.2.5.1 Simulation-Based Control

In any solver strategy, robustness is a major factor, especially in whole building

energy simulation applications. Simulation-based control is emerging as an active

area of research not only for general controls, but also for real-time optimization in

a diverse set of fields within industry. A study of using simulation-based control

to operate an industrial injection molding process was described by Johnston et al.

(2009). Lee and Prabhu (2010) described an optimized route-planning algorithm that

relied on simulation to minimize energy costs related to delivery services. Within any

simulation-based controller, the robustness of the simulation algorithm is of highest

priority. There is no opportunity to debug problems once the algorithms are embed-

ded and operational. Thus, the simulation algorithm must be stable and convergent.

Certainly some abstract numerical model simulations are reliable, but the breadth of

the simulation is so large, it is difficult to predict that in every case the simulation

will be successful. Within a tighter, more well-defined simulation algorithm, these

conditions are easier to detect and logic can be implemented to bring the simula-

tion to a stable condition. The loop topology variations available in the proposed

model are intended to cover a vast set of possible hydronic loops, both conventional

and novel, while still providing mathematical systems that can be solved robustly

under the given assumptions, allowing it to be suitable for simulation-based control

applications. The implied flow direction in the loop is a key feature of this robustness.
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2.3 Methodology

The proposed ICE-B simulation model described here is developed based on the topol-

ogy shown in Figure 2.3 with the intention of solving the state point (temperature

and flow) distribution of this network. This implies a solution of the governing con-

tinuity and energy equations. The momentum equation holds an interesting position

in this solution due to the lack of a full pressure network and the predefined flow

directions in the system. The solution of the momentum equation is inherent in the

flow distribution algorithms, but not does appear explicitly in a typical pressure-flow

relationship form.

Solving this system also implies solving for the energy usage of the system via

the individual component models, which provide the link (energy equation) between

state points. Controls are employed in the system which attempt to satisfy various

setpoint temperatures around the network as needed. Note that in many cases, the

“loop solver” is referred to, which comprises the solution algorithms for a single half-

loop (Figure 2.3). This half-loop, or loop-side encompasses one side of a physical

loop. (See section 2.1.3).

2.3.1 Component Model

The system of state points scattered through the network shown in Figure 2.3 (the

small dots) are linked together by component models. The form of the component

model can vary from empirical curve fitted chiller relationships to ideal pipes that pass

fluid states directly from inlet to outlet. (These pipe models are used as placeholder

components in the system, making connections in loop spaces where no physical

components exist.)

Component models have two responsibilities:

1. Solving the continuity equation

2. Solving the energy equation
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While this may seem like a curious emphasis to make, it is crucial to an under-

standing of the design of a robust simulation model. The boundary conditions for

each equation may be fixed for a component model, or vary through the simulation.

The component model is responsible for enforcing both a mass (continuity) balance

and an energy balance subject to the specified boundary conditions.

2.3.1.1 Overall Design and Boundary Conditions

Component models in the context of this simulation model are essentially control

volumes that enforce energy and mass conservation across their boundaries. To solve

the system, the fundamental operation of the model need not be exposed to the loop

solver, as long as certain conditions are met. Components obey the overriding system

design wherein flow direction is predefined. Thus, a component model will have

an inlet boundary condition at a specific point, or node, and an outlet “boundary

condition” at another fixed point, or node. Components will often operate using other

boundary conditions beyond the inlet state. As an example, consider an air cooled

chiller component. In terms of physical connections, the chiller will have one inlet and

one outlet fluid port. The chiller will also have a boundary condition of (entering)

ambient air temperature and flow rate, and therefore an outlet air state as well. The

solution algorithm need not understand this connection to the boundary to solve the

system, instead relying solely on information transferred via the fluid inlet and outlet

nodes. In another example, consider a water cooled chiller. This component will

actually have four connections: an inlet and outlet on the chilled water loop, and

another inlet and outlet for the condenser loop. The chiller component simulation

will occur on each loop individually and the solution algorithm will be essentially

unaware of the connections between the loops5.

5An exception is at the very highest level of the simulation model, where interconnected loops are
determined to optimize simulation order and monitor overall convergence, however this is irrelevant
to the solution of a given loop.
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As per this discussion, the component simulation model is a causal component in

terms of a predefined flow direction, operating against an inlet boundary condition,

any number of unspecified boundary conditions, and providing an outlet condition.

This formulation is shown in Figure 2.4.

Figure 2.4: Generalized view of a simulation component model

The unspecified boundary conditions can include, but are not limited to the fol-

lowing list:

• ambient outdoor environment, as in the air-cooled chiller described above, or a

cooling tower

• ambient zone conditions, such as an exposed pipe in a mechanical room or

exposed ducting in the conditioned space

• ambient ground conditions, such as a buried pipe acting as an environmental

heat exchanger

• a connection to another loop via a direct heat exchanger

• a connection to another loop via a refrigerant loop, such as the water-cooled

chiller described above, or a heat pump

The component model has two responsibilities: ensuring continuity and providing

a solution to the energy equation subject to the specified boundary conditions.

2.3.1.2 Continuity

Continuity in the system is ensured by providing a line of communication between

the solver and the component. This is achieved by using a specialized interface called
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SetComponentFlowRate. The name of this interface is a bit of a misnomer, as the

interface does not directly set a flow rate, but rather allows components to issue flow

requests, which are processed by the solution algorithms. This is described in detail

in a later section (2.3.2), however it is noted here first as it is a key mechanism in

ensuring that the component and system maintain continuity. This interface defines

one required feature of all plant component models.

2.3.1.3 Energy

While continuity is ensured by utilizing the component interface, the energy equation

is solved by individual component model formulations. Most models, though not all,

are formulated as steady state. To provide feedback to the system, the goal of the

component models is generally to solve a form of the sensible heat transfer equation:

q̇ = ṁCp (Tout − Tin) (2.5)

This may seem like a nearly trivial concept, however further discussion provides

insight into the complexity. There are four variables in equation (2.5) which have

varying meaning based on the component type and solution state6. The specific heat,

Cp, does vary based on temperature, however this effect is irrelevant to the current

discussion, and the property may be treated as constant. The four relevant variables

in equation (2.5) are discussed in Table 2.1.

Component models exist within a loop simulation inside a whole building energy

simulation model, and the energy usage (electric power, for example) is also calculated

by each model. Component efficiency is often dependent on entering conditions, which

results in an energy usage dependence on operating conditions that is captured by

the simulation model. Components may lodge their energy usage to output routines

6This is eluding to the fact that the solution algorithm is not an explicit solution, but rather an
iterative implicit solution, and that the behavior of components may be different depending on the
current solver state.
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Table 2.1: Discussion of variables found in equation (2.5)

Variable Comments

q̇ The heat transfer rate may be a result of a component model cal-
culation or a demand imposed on it as a request from the system
solution algorithms. The difference depends on the current control
strategy for this component.

ṁ The mass flow rate in this equation is the result of a negotiation
between the component model and the system model which ensures
continuity while attempting to meet simulation demands. Flow may
be requested by components based on design conditions or current
demands.

Tout The outlet temperature may be either a result of attempting to meet
a heat transfer request/demand, or a desired outlet condition (set-
point) for the component itself.

Tin The inlet temperature is a fixed boundary condition at a given point
in the simulation.

which can then aggregate these values to generate reports.

2.3.1.4 Model Types

The system simulation solver must be capable of managing a diverse set of component

models. The diversity exists not only in the physical nature of the components as

they exist on real loops, but also in the mathematical nature of the model. Handling

this diversity in a robust way is a key feature of the ICE-B model.

If all component models in the simulation were of the same form, for example

equation-fit representations, the system model may be reduced to a more simple con-

figuration, where in the extreme case, the system model could be reduced to a fully

graphical solution. However, this system model must handle both equation-fits and

parameter estimation models, as well as numerical finite difference, and response fac-

tor model forms. The component model library in EnergyPlus is rich, allowing many

typical and novel system configurations to be simulated, and utilizing the best math-

ematical form for each application. This is one reason for the selection of EnergyPlus
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as a basis for this model development.

Equation-Fit Models The term equation-fit models refers to models that rely on

a (generally) small number of equations, with coefficients derived from manufacturer’s

data, experimental data, or otherwise estimated. The form of the equation need not

represent any underlying physics of the physical object itself, as long as it suitably

predicts the component response under given boundary conditions (including initial

conditions for dynamic components). The equation could predict the response of any

aspect of the component, with common models representing heat transfer or power

as a function of entering fluid and other boundary conditions.

One of the air-cooled chiller component models in EnergyPlus is an example of

an equation fit model. The air-cooled chiller model is a single inlet, single outlet

component, which can be abstracted from the physical component to the generalized

diagram of Figure 2.4. The component interacts with ambient conditions as an ex-

ternal boundary condition. The component has a number of parameters which may

include physical design values such as design flow rate, capacity, and temperature

conditions.

For this single inlet, single outlet component, the model will request flow on the

loop-side to which it is connected.7 The flow for the component may be requested

based on design inputs. This is requested via the interface SetComponentFlowRate,

which may adjust this value based on loop conditions and constraints. Once the

operating mass flow rate is determined, it is joined with the entering fluid temperature

to fully define an inlet boundary condition.

As an example, an EnergyPlus chiller performance model is described here. This

model is derived from the BLAST simulation program (Blast Support Office, 1986).

Component performance is determined as follows, with nomenclature listed in

7In contrast, some components may be connected to multiple loops, such as a water cooled chiller
that has both evaporator and condenser connections. See section 2.3.6.5 for details on coupled loop
simulation.
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Table 2.2: First a representative temperature difference, δ, is calculated based on

entering and design conditions to be used in subsequent calculations:

Table 2.2: Nomenclature used in describing the equation fit component model

Variable Description

Tin,condenser A dynamic state variable representing the current
condenser inlet temperature boundary condition
(for this component model, it is the outdoor air
dry bulb temperature)

Tin,condenser,design A fixed user-input parameter for this chiller com-
ponent

δTrise,ratio A fixed user-input correction factor for off-design
operation

Tevap,out A simulation setpoint for target chilled water sup-
ply temperature

Tevap,out,design A fixed user-input parameter for design chilled wa-
ter supply temperature

Qevap A water-side heat transfer rate for this chiller, typ-
ically prescribed by current control operation

Qdesign The design water-side heat transfer capacity for this
chiller

αi, βi, γi User-input curve-fit parameters which define the
component performance during off-design condi-
tions

δ =
Tin,condenser − Tin,condenser,design

δTrise,ratio
− (Tevap,out − Tevap,out,design) (2.6)

The available evaporator heat transfer capacity is then calculated as a curve fit

(with coefficients generated from manufacturer’s data):

Qfrac =
Qevap

Qdesign

= α1 + α2δ + α3δ
2 (2.7)

The part load ratio is inferred from this variable using another curve fit:

PLR = β1 + β2Qfrac + β3Q
2
frac (2.8)

38



The fraction of full load power is then calculated using yet another curve fit:

Pfrac,fullLoad = γ1 + γ2 (PLR) + γ3 (PLR)2 (2.9)

And finally the compressor energy use is calculated from these part loadings and

a rated COP:

P = Pfrac,fullLoad × PLR×
Qfrac

COP
(2.10)

Equations 2.6 to 2.10 comprise the process of taking entering boundary conditions

(temperature) and parameters (specified COP and design conditions) and resulting in

energy use. This energy is then put on to the fluid loop via the component outlet state

point (the fluid is colder on the component outlet, thus removing heat from the fluid).

The compressor power can be reported to consider the energy use of this component.

Variations of this particular model include variable COP which can also vary with

entering and environmental conditions, and a component coupled to multiple loops

to handle water-cooled chillers and heat recovery loops.

For this component model, the solver interacts with the component model by first

providing a fixed entering condition: the entering temperature. This is calculated as

the outlet response of upstream component models. The operating mass flow rate

for the component is not specified directly, but is resolved through communication

between the component and solver during the entire system solution. The solver

also provides constraints to the component model including operating limits. The

heat transfer for the component may be specified by control logic, however the heat

transfer may be limited by the constraints imposed and component capacity. The

outlet temperature may be a setpoint assigned again by control logic, however the

ability to meet this request may also be limited by other constraints and component

parameters. These boundary conditions and constraints are used by the component
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model with its own governing equations to determine a response and provide outlet

conditions to be used downstream.

Parameter Estimation Models Parameter estimation models generally refer to

models that use a mathematical representation that more closely represents the object

physics than do equation-fit models. For example, instead of a polynomial represen-

tation of the heat transfer to entering fluid temperature relationship, this relationship

may be modeled based on physical materials and geometry.

One example of such a model is the water-to-water heat pump parameter estima-

tion model (Jin, 2002). The entire model description can be found in that source,

although the compressor is shown as an example of the parameter estimation ap-

proach. The compressor mass flow rate is calculated, for a reciprocating compressor,

as:

ṁ =
PD

νsec

[
1 + C1 − C1

(
Pdis
Psuc

)1/γ
]

(2.11)

The compressor power is calculated as:

Ẇ =
γ

γ − 1
ṁPsucνsuc

[(
Pdis
Psuc

) γ−1
γ

− 1

]
(2.12)

The form of equations (2.11) and (2.12) include a sense of physicality, which is

why this model is termed a parameter estimation type. In these equations, there are

a number of parameters which represent physical values of the compressor, as listed

in Table 2.3.

Table 2.3: List of physical parameters found in equations (2.11) and (2.12)

Symbol Description Typical Units

PD Compressor Piston Displacement m3/s
C1 Compressor Clearance Factor −
Pdis Discharge Pressure Pa
Psuc Suction Pressure Pa
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The parameters in Table 2.3 are used to predict the compressor response. The

heat pump model then includes models for the coil heat transfer. In this particular

model the coils are effectiveness-based, however the coil model could be of any type.

This parameter estimation model is itself a collection of sub-component-models of

different formulation.

The system solver must be robust in handling diverse components without rely-

ing on a specific formulation type, including component models which are themselves

collections of sub-component models. For this water-to-water heat pump compo-

nent model, the solver provides multiple boundary conditions to close the component

model’s equation system on both hydronic loops to which it is attached. This re-

quires proper simulation of multiple loops, including inter-loop communication of

constraining conditions.

Numerical/Finite-Difference Models There are a few component models in the

EnergyPlus library which utilize a finite difference form to solve the governing differ-

ential equations. One major application is in ground heat exchanger models, where

the ground temperature is solved using a numerical grid while the fluid also passes

through the plant. The component model no longer relies on the solution of a single

differential equation to determine the fluid response, but instead relies on the solu-

tion of a large number of equations to be solved concurrently. This application is

covered in great detail in the development of a new ground heat exchanger model

(see Chapter 4). A transient energy balance is first established in the domain:

∂T

∂t
= α∇2T (2.13)

This equation is discretized and solved at each node in the ground. In addition to

the ground solution, the model acts as a component model on a hydronic loops. The

hydronic component model consists of a single circuit of fluid that passes through
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the ground domain, from an inlet to an outlet. The ground may also contain mul-

tiple circuits that could exist on one or more hydronic loops. Thus the solver must

be able to interact with this single domain object at any number of locations. At

each location, the fluid circuit in the ground domain requires a well-defined entering

condition, and properly applied constraints and control settings. The system solver

handles this robustly because of a generalized development and proper interfacing

between component models and the solver itself.

Response Factor Models A response factor approach is used in the solution of the

transient wall conduction problems for zone simulation. An initial model of any form

is used to calculate the response to impulses on the system of differential equations.

The response is captured in the form of a series of dynamic coefficients. In the same

way, a response factor approach is used to capture the response of a vertical borehole

heat exchanger system Yavuzturk and Spitler (1999). The model uses superposition

to aggregate the loads from the borehole history and a set of g-function response

factors to determine the borehole temperature using the following equation:

Tborehole = Tground +
n∑
i=1

Qi −Qi−1

2πk
g

(
tn − ti−1

ts
,
rb
H

)
(2.14)

The key feature of interest from this equation is the use of the series of response

factors gi, which represent a transient response to a series of historical conditions in

the borehole system. The system simulation model must be able to handle dynamic

simulation models along with a variety of other simulation model types, including

steady state or quasi-steady state. Transient component models used with this solver

are required to handle the iterative nature of the solution algorithm, and provide

continuity and energy balances through changes in time step size.
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Connector Component Models Pipes may be modeled as either heat transfer

components or simple flow connector components. Flow connector components are

idealized, adiabatic, pipes. There are no physical parameters required to define their

operation, and no external boundary conditions in relation to Figure 2.4. When this

component is simulated, it simply takes the inlet condition, and passes it to the outlet

state point (Texit = Tinlet). No flow requests are made and the component transfers

no heat to the loop. Although this component is conceptually trivial, it is a required

component for the generalized solver, in which every branch should have at least one

component, no matter how simple or complex. While this component is trivial, it

must still provide continuity and energy balances like all other component models.

2.3.1.5 Summary

The EnergyPlus central plant simulation component model library is diverse in terms

of the physical objects to be simulated, and also the types of formulations used to

solve the component’s governing equations.

Consider a contrasting scenario, in which all component models were of the same

form. In this case, the system simulation model would have a pre-determined under-

standing of the interconnections between all the components available for simulation.

This would make simulation of such components easier, and could even reduce the

system simulation model to a single matrix solver, for example, if all coefficients were

known for all components in a single form.

There are many applications where the same form does not fit between compo-

nents. A parameter estimation procedure works well for components that rely on a

small set of governing equations, and especially well for steady state solutions. For

transient solutions, such as a ground heat exchanger, the number of equations to be

solved gets larger, and the interaction between simulation features becomes stronger.

As such, a more general approach is utilized in these cases, either a response factor
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method or a numerical/finite difference form. As such, the solver for the new model

is able to handle any component model type by hiding the underlying component-

model solution in the component itself, and communicating via specially designed

interfaces. The solver makes certain things available to component models, such as

historical data at points in the system, however the physical calculation of component

response is independent of the system solver itself.

2.3.2 Flow Network Solution

The new model proposed here, and termed the Improved Continuity & Energy-

Balance (ICE-B) system model was designed to replace the existing solver described

by Fisher et al. (1999a). Both the existing and proposed models attempt to provide

the solution to the system of component-interconnected state points, while trying to

meet loop demands and ensure system convergence is attained. The ICE-B model

uses a predictor/corrector approach where a flow request is initiated by a component,

and represents the predictor step in this logic.

This initial discussion describes an underlying feature of the system solver: the use

of a flow request mechanism along with two-way communication between components

and the system solver, and the iterative coupling between them.

2.3.2.1 Flow Request: A Definition

The flow request is an extra variable used to describe state points in the system. This

is unrelated to a thermodynamic state point, instead acting as a metadatum, used to

provide the simulation with additional information. The flow request is used by the

solver to resolve overall loop and individual leg flow rates.
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2.3.2.2 Flow Request: Methodology

A flow request is a notice issued by a component model and passed to the system

solver. The solver takes this value, logs it, and makes decisions regarding network flow

conditions. The flow request mechanism is a key feature, ensuring that the simulation

provides continuity and a stable iterative solution algorithm.

Table 2.4: Simplified description of how component models calculate a flow request

Component Description Flow Request Overview

Constant Flow This component will make a request based on
a design flow rate, which can be specified by a
user, or auto-sized based on demand conditions
encountered during sizing calculations.

Variable Flow Variable flow components will calculate a flow
request in order to meet an outlet temperature
setpoint and also possibly to meet a certain de-
mand from the loop.

The flow request is made by a component model based on a number of conditions.

Some examples are listed in Table 2.4. The flow request lodged by a component model

is not necessarily the flow rate at which the component will operate. It is instead an

indicator to the system of the component’s desired (perhaps optimal) state. The value

of the flow request is logged by the SetComponentFlowRate routine as a part of the

state point definition to be retrieved later. As previously discussed, this mechanism

is a two-way communicative interface between the system solver and the component

model. The component model is able to try to meet demands and affect the system

solution by lodging requests, and the solver is able to adjust the actual component

flow rate and attempt to meet these requests. This reduces the responsibility of the

component model by taking away overhead related to the state of the simulation. In

the existing simulation solver, component models checked the status of various parts

of the simulation to determine a suitable operating point. This ill-defined protocol

could not guarantee that both continuity and energy balances would be enforced at
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the component and loop levels. With the new interface, the component always follows

a set pattern during every step of the simulation:

1. Calculate/determine a desired flow condition

2. Use the interface to exchange information with the solver (The solver will always

return a suitable, stable, condition)

3. Operate under this possibly adjusted condition, even if unable to meet demand

The communication between the solver and component models provides a stable

simulation environment for solving the system of state points. The flow request logic

has additional important features: the ability to directly handle variable flow oper-

ation, perform diagnostics and monitor convergence. The request is essentially the

predictor step in the predictor/corrector logic of the system simulation model, and

may not be the final resulting flow rate. This flow request logic is also a key part

of allowing for variable flow components to be simulated, monitoring system conver-

gence, and providing operation diagnostics. The flow requests are carried through the

simulation as accompanying metadata to the thermodynamic state point data, and

as such, they can be compared to the final (converged) state of the system. This can

feedback useful information about flow-starved legs of the network and therefore be

useful in diagnosing other simulation results such as zones which are out of control.

System convergence, which is described in section 2.3.6.4, is monitored by compar-

ing the variation of flow requests lodged at specific points in the system throughout

simulation iterations.

2.3.2.3 System-Component Flow Interface

Component models determine a flow request, call the routine SetComponentFlowRate,

and then use the resulting, possibly adjusted, flow rate for subsequent calculations

and reporting. This hides many overhead and bookkeeping issues from the component

which minimizes the possibility of bugs in developing component models.
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The solver can be in one of two states: either “unlocked” or “locked”, as shown

in Figure 2.5. These states correspond to the simulation logic for the predictor and

corrector steps, respectively.

Figure 2.5: Basic logic of the SetComponentFlowRate routine

In an unlocked state, continuity is not enforced around the loop. Instead loop

limitations are enforced, including:

• Specified maximum flow limits on the loop (presumably based on hardware

limits or similar)

• Pumping limitations

• Flow restriction (essentially a high pressure drop situation reducing the maxi-

mum flow available)

In this way, components are provided a realistic estimate of available flow in

the system. This is a loose simulation state that again does not ensure continuity

throughout the flow network. Components will take this loose estimate and predict

an impact on the loop. After the loop is loosely simulated, the flow rate around the
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loop is fully resolved to enforce continuity while attempting to meet flow requests

(see sections 2.3.2.4 and 2.3.2.5), and the flow is locked down to begin the corrector

step. Under this locked state, components will again attempt to request a flow rate

(independent of the simulation state). With the flow locked, the solver interface

always returns the resolved flow for that leg of the system to ensure stability and

continuity in the simulation. The component must then take this flow rate and

attempt to meet demand and operate within the specified control strategies. The

existing model did not have a specifically designed interface, instead relying on each

component model to check various simulation states and use global locked states to

perform the simulation.

2.3.2.4 System Level Flow Resolution

In a physical system, the total loop flow rate is reached in a balance between the

pressure head addition of the pumping system and the pressure drop of the remainder

of the system, resulting in an operating point on the pump curve(s), which could

certainly involve variable flow controls throughout the system. In the new simulation

environment, the flow rate is not driven by pressure, and the total flow rate must be

calculated in a different manner.

In the new simulation, the total loop flow rate is determined based on pumping

capability and loop limitations, correlating with the physical system. To determine

this loop flow rate, the total maximum pump capacity must be determined. This is

achieved by querying the pumps individually to update their maximum capability.

The pumps may have varying abilities based on scheduling limitations (some pumps

only available at off-peak time, for example). Each pump will provide the system

solver a maximum available flow rate. Since series pumping is not implemented for

a single loop-side, adding up all loop-side pumps provides a total system pumping

capacity. The possible pump configurations are shown in Figure 2.6.
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Figure 2.6: Allowable pump placement configurations for a single loop-side

The total pumping capacity may exceed other loop limitations. These limitations

can include:

1. explicitly specified maximum loop flow rates

2. explicitly specified maximum component flow rates which result in a constrained

overall flow

3. a restricted flow condition encountered during a simulation in which components

in the loop can only handle a certain maximum flow

The first two of these are encountered during solver initialization, and limitations

can be imposed early. The third is a dynamic issue that must be considered at every

iteration as the system converges. This is analogous in a physical system to a loop

which does not have a 3-way control valve with bypass, but instead controls flow

through demand coils with 2-way control valves. As the 2-way valves are closed, the

pressure drop increases, and the pumps respond with a reduced flow. The simulation

model responds similarly, but the restricted flow condition is not driven explicitly by

a high pressure drop.
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The final piece of the puzzle is how to determine an initial guess at loop flow

request for a given iteration. This is calculated based on the most recent individual

component flow requests. The maximum request by any component on a branch be-

comes the representative flow request for the entire branch. If the loop-side contains

parallel branches, the branch flow requests for each are summed in parallel and then

compared to the remaining series portions of the loop. The maximum flow rate is

selected, noting that some components such as variable speed pumps will not them-

selves issue a flow request, instead relying on the remaining components on each leg

to initiate flow requests.

The logic used in determining the total loop flow rate is shown in Figure 2.7.

Analogous actions of the physical system’s components are also shown in the Figure.

Once the total loop flow rate is obtained, it is enforced on this loop-side, regardless

of whether it is suitable for meeting the current demand and flow request. It is a

stable value using component and pumping limitations to ensure the system maintains

control (simulation semantic control, not necessarily setpoint control).

Figure 2.7: Process of determining a total loop flow rate
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The simulation then proceeds for this loop-side to simulate individual component

models and distribute flow to parallel legs. The parallel distribution approach is

described in the next section. This entire process is iterative with the ultimate goal

that the flow request and components will either converge on a total flow rate and

flow distribution that satisfies pump capacity and restrictions, or the loop will be

unable to meet all demands or requests. This situation occurs in a real system when

flow control valves have lost authority due to insufficient flow (low pressure drop) in

the system.

2.3.2.5 Parallel Leg Flow Resolution

As described in section 2.1.3, a loop-side may contain parallel legs in between a set

of series inlet and outlet legs. If it does not contain this parallel set, then the total

loop flow rate calculation described in the previous section is sufficient to resolve the

flow through the series system, and satisfy continuity. The current section describes

the resolution of the total loop flow rate for parallel component paths.

In a controlled physical flow-network, the calculation of a pressure network allows

the computation of uncontrolled loop flow rates. Without a pressure network calcula-

tion, the proposed simulation model algorithms assume that the control valves on the

system close instantly in an ideal fashion to regain authority over the network, and

distribute remaining flow according to operating priorities. These operating priorities

are established by specifying the type of flow control associated with the component.

Since the total flow through the entire network is enforced based on previous calcula-

tions, this step can be understood as determining the ratio of the total loop-side flow

rate through each branch. This can be demonstrated first by example.

Consider the parallel path network shown in Figure 2.8. In this figure, three

components are shown with different flow control labels. The “Active” component

generally represents a piece of equipment with a two or three way control valve or
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Figure 2.8: A simple parallel path showing components of various control classes

a dedicated pump and a high priority in receiving flow, such as a chiller or cooling

coil. “Passive” components do not have a means of controlling their flow, but are

dependent on the current pump/system configuration to determine flow. Ground

heat exchangers are often configured this way. These components have a lower flow

priority than “Active” components, as they may not be as closely coupled to the

loop supervisory controls as “Active” components. When flow is available, “Passive”

components will operate like “Active” components, however in flow-starved or excess-

flow cases, “Passive” components have a lower priority in receiving the flow they

request. “Bypasses” are parallel legs that consist only of a pipe component. Use of

a “Bypass” component implies that at least one parallel component on the loop-side

is controlled by 3-way valves, and the “Bypass” will close down as needed to ensure

flow is distributed to other controlled components. Each of these component types

are described in terms of their flow request and flow distribution design in Table 2.5.

The flow resolution procedure follows the following logical progression:

1. Attempt to provide all active branches with their requested flow rate. This

corresponds to adjusting control valve positions for all active components to

ensure they get the flow they request.

• If the network is now flow-starved because of a lack of pumping capacity,
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Table 2.5: Brief overview of component control types in relation to flow requesting
and flow distribution

Type Flow Requesting Flow Distribution

Active Requests flow based on cur-
rent demands and any other
component model calcula-
tions.

These components have the highest prior-
ity in receiving the actual request, thus the
least likely to be starved or overfed with
flow.

Passive Requests flow based on de-
sign constraints and compo-
nent model calculations.

While the flow requests are lodged in de-
termining a total loop flow request, these
requests are considered only after active re-
quests have been met during parallel flow
resolution.

Bypass Does not request flow. In the case of excess flow (more flow than
requested), bypass legs, when included in
the loop topology, will take excess flow to
allow active (and passive) components to
receive their requested flow.

control priority is given to components in the order specified in the controls

design in the simulation input.

2. Attempt to provide passive branches with their requested flow. This corre-

sponds to adjusting control valves for passive branches, without affecting the

flow control for the already adjusted active components. It is then assumed

that the control valves automatically and ideally adjust to the changed pres-

sure distribution in the network.

• Passive branches are given their requested flow in order of appearance

in the simulation input specification. If there is not sufficient flow for a

component, it is assumed that the control valve ideally closes down to

regain authority over the flow so that further flow distribution can be

handled.

3. Distribute excess flow through the bypass components, if they exist.

• Bypass branches can inherently handle any flow rate, so if any bypass exists
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on the loop-side, it is impossible for excess flow to exist beyond this point

in the control logic.

4a. In the case that excess flow exists without a bypass path and without a loop

pressure drop calculation in place, distribute the excess flow.

• First the passive components accept excess flow by opening their control

valves first, thus providing a control preference to the other active compo-

nents.

• If there is still any excess flow to be distributed, it is then distributed to

the active components.

• The parallel legs will never encounter a total loop flow greater than the

maximum capacity because the maximum loop capacity is included in the

total loop flow constraints.

4b. In the case that excess flow exists without a bypass path, however a pressure

drop calculation is in place, adjust pumping capacity using the pressure drop.

• For the current iteration, the flow is distributed according to step 4a.

However, in the following iteration, the pressure drop and system flow

rate are used to calculate a representative system curve, which is used in

conjunction with a pump curve to resolve to a restricted operating point.

• The standard approach used in the proposed model does not require pres-

sure drop information. These supplementary pressure drop calculations

are described in section 2.3.3.

At this point, the flow has been resolved using an algorithmic approach instead of

a traditional pressure network solution8. As an example, consider a physical system

that is analogous to the simplified network in Figure 2.8. In a physical system, there

will be valves placed on each leg that work in conjunction with controllers to ensure

8If pressure drop calculations were utilized, they are used in resolving the total loop flow rate,
not resolving individual parallel path flow rates.
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fluid is passing through the appropriate legs. At high demand, the active component,

which could be a chiller, may need the full capacity, so the other valves are shut down

and the active branch is fully open. As demand reduces, a secondary heat exchanger

may be utilized to handle some demand, this being the passive branch. In cases where

the chiller or heat exchanger flow demand is lower than the minimum pump flow rate,

the bypass leg is opened to allow smooth operation of the system. In this simulation,

the valves are essentially an idealized, inherent aspect of the logical flow resolution

technique. Instead of measuring pressure drops and adjusting valve positions, flow

requests are processed to determine a resulting network flow solution.

2.3.3 EnergyPlus Pump Models

The models used to simulate pumps are not significantly different in the ICE-B model

than the existing model. The main difference between the two occurs at the interface

between the system model and the pumps, not within the pumps themselves. The

system solver has a special state that occurs at the beginning of the predictor-step

which is used solely for querying the pumps located on the current loop-side. This

step allows the solver to calculate the maximum pump flow capacity at the current

time, which could vary based on pump scheduling and availability. This information

along with many other variables are used to determine the current loop operating

point (section 2.3.2.4). Once the maximum pump capacity has been determined and

used in determining the loop flow rate, the pumps are treated like other component

models: as control volumes which must themselves enforce continuity and energy

balances over their mathematical boundaries.

While pump model details are similar between the existing and proposed Energy-

Plus simulation models, the pump simulation methodology is much different than in

those models that are based on a pressure network solution. Section 2.3.3.1 provides

a description of the standard modeling approach used in this system simulation. Sec-
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tion 2.3.3.2 provides a description of an alternative pressure-based modeling approach,

followed by supplementary details on the approach used in the proposed model.

2.3.3.1 Non Pressure-based Modeling

The solver has the ability to provide the pump component model with a desired flow

condition, however the pumps themselves can control their own desired flow condition

based on scheduling or other control management operations. The pump will take this

information and calculate a flow request, which is sent to the SetComponentFlowRate

interface. This routine logs the request, and makes appropriate adjustments to obey

loop flow constraints, and returns back a suitable flow rate, which the pump must

use. To allow for more stability with diverse applications, the proposed solver now

stores pump requests at a higher level instead of relying on the pumps themselves

to track this information. This improved the possibility of placing pumps in diverse

configurations on the loop.

Non pressure-based pump modeling includes special features for two cases: con-

stant vs. variable speed pumps and banks of headered pumps.

Constant vs. Variable Pumping The constant speed and variable speed pump

models do not rely on pump curves directly. Pumps have the ability to induce flow

in the network by issuing flow requests along with the rest of the components, as

described in section 2.3.2.2. This is where the key difference between constant and

variable speed pumping models is found. Constant speed pump models will attempt

to provide flow at a design or otherwise specified rate, independent of the state of

the simulation and components. Variable speed pump models do not explicitly make

flow requests, but instead remain available to providing flow as desired by other

components on the loop. Variable speed pumps can be thought of as followers, not

leaders, in determining loop flow conditions. Of course without the pumps in place

there wouldn’t be any flow, just like in a real system. (While this situation would be
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a trivial exercise, the lack of any pumps would naturally be recognized in the loop

flow calculations in section 2.3.2.4.) Capturing the constant and variable speed pump

operation in this fashion is idealized, however more advanced capabilities have been

implemented to perform more detailed pressure-based studies (section 2.3.3.2).

Pump Banks In many systems, banks of pumps are headered to provide either

maintenance or safety redundancy, or to provide the ability to stagger operation and

optimize on-hours for individual pumps. These are modeled in the current simulation,

but as a “black box.” At the interface with the system solution, pump banks appear

as a single pump (either constant or variable flow). The entire pump bank consists of

a single inlet and single outlet, and provides a single flow request to the system solver.

Once flow is resolved, however, the pump bank models post-process the flow along

with pumping configuration to determine the number of pumps running in the pump

bank. This allows a suitable representation of the part-load operation and energy

use.

2.3.3.2 Pressure-based Modeling

Both the component and system simulation models have been described in a pressure-

less fashion, with an emphasis on the suitability of this methodology in a whole

building energy simulation environment. In these simulations, the efforts of pump

curve fitting, system curve modeling, and solution of a full pressure network may not

be justified for evaluating the energy use of the plant. However, the simulation model

has been extended to provide a layer of pressure calculations to allow a more accurate

representation of energy use, or flow constraining operation to be captured, without

moving to a full pressure-based flow network solution. This section describes the

pressure-based methodology calculations and limitations, including the pump model

formulation for cases where the pump also includes pressure information. The first

step is to calculate a pressure drop for the entire loop.
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Loop Pressure Drop: For loop pressure drop calculations, each flow leg (branch)

of the system can have a representative pressure drop. These individual branch

pressure drops are lumped together to achieve a total loop pressure drop for further

calculations. The pressure drop on any branch may be calculated using one of two

options: a predefined pressure formulation or a generalized function of mass flow rate.

These two forms are summarized in the following table:

Formulation Expression Notes

Predefined ∆P =
(
f L
D

+K
)
ρV 2

2
Major and minor losses

Generalized ∆P = f (ṁ) Any other formulation

Note that the predefined formulation accounts for the possibility of both major

and minor losses for a given branch of the system, using both the friction factor f

and the minor loss coefficient K. The generalized formulation can be any of many

different forms which are built into the simulation shell including linear, quadratic,

cubic, quartic, logarithmic, and others. Any univariate functional form could be

utilized for a specialized case.

The individual branch pressure drops are then combined into a total loop pressure

drop for the current flow condition. The maximum pressure drop of the legs on any

parallel set is the representative pressure drop for the entire parallel set. The overall

pressure drop calculation for an entire loop (both demand and supply loop-sides) is

calculated as:

∆Ploop = [∆Ploop−side]demand + [∆Ploop−side]supply (2.15)

∆Ploop−side = ∆Pinlet−branch + ∆Pparallel + ∆Poutlet−branch (2.16)

In subsequent calculations, the total loop pressure drop is used, with the individual

terms being used only to calculate this total loop pressure drop. This approach results
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in a flexible model, however also reveals a requirement on the usage:

Flexible: Pressure drop information is not required for every branch of the entire

system.

Limitation: The lumped nature of the pressure model does not perform pressure-

based parallel path flow resolution, instead relying on and working with the

logic (flow-request) based flow resolution model.

Requirement: Every flow path through the system must have at least one pressure

drop component, though the placement is flexible. Consider a loop-side with

two parallel components. Three obvious cases are possible:

• Figure 2.9a shows pressure drop components on each parallel leg, thus

every path through the system will have a representative pressure drop.

• Figure 2.9b shows that one parallel component does not have a pressure

drop component, however the outlet leg does, so every path will still have

at least one pressure drop object.

• Figure 2.9c shows an invalid case where the second leg of the system does

not have a pressure drop component, which is invalid.

The pressure drop in the parallel system is not used for parallel flow resolution,

instead relying on the algorithmic, flow request-based, flow resolution model. To ac-

commodate pressure balancing in these parallel systems, the pressure model includes

“valves” inherently placed at the outlet of each parallel branch, as shown in Fig-

ure 2.10. The highest pressure drop in the parallel branch set is determined and used

as the pressure drop for the set of parallel components:

∆Pparallel =
NPP
max
i=1

∆Ppath,i (2.17)

Where:NPP = #ParallelPaths (2.18)
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(a) Case A - Valid (b) Case B - Valid

(c) Case C - Invalid

Figure 2.9: Possible pressure drop object placement configurations for a given loop-
side
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The remainder of the parallel branches will all report at this same pressure drop

by using a “valve” to increase the pressure drop to match.

∆Pvalve,i = ∆Pparallel −∆Ppath,i (2.19)

Note that since the pressure drop is not used in resolving parallel flow, this will not

have an effect on the final mass flow rate through the branches. This is an idealized

system that can meet the resolved flow system using an arbitrary pressure drop.

Stated differently, the pressure drop, as described in this section, is predominantly

just a value that is post-processed from the main simulation algorithms. While these

individual branch/valve pressure drops are not used in flow calculations, the final

pressure drop calculated for the entire loop is useful for further loop-level calculations.

Figure 2.10: Pressure drop with idealized valves and control

Pressure-based Pumping: Stage 1 One possibility for using the loop-level pres-

sure drop is to better predict pumping energy. With the standard pressure-less pump

model, the energy is a function of (at most) the ratio of current flow rate to design

flow rate. With a loop-level pressure drop, the resolved system flow rate can be used

to better predict the pump energy added to the fluid, using the simple flow expression:

W = (∆Ploop)Q (2.20)
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This improves the estimate of pumping energy without requiring a detailed pres-

sure network solution which would then require a substantially larger amount of input

parameters.

Pressure-based Pumping: Stage 2 A second possibility for using the loop-level

pressure drop involves the use of a pressure-flow pump curve to allow a constant speed

pump to “ride the pump curve”. The pump is modeled as a dimensionless curve-fit

to manufacturer’s pump data in a fourth-order (quadrinomial) form:

ψ =
4∑
i=0

Ciφ
i (2.21)

Where:

∆P = ρ

(
N

60

)2

D2ψ

ṁ = ρ
N

60
D3φ

N = Rotation speed

D = Impeller diameter

This pump curve is used along with iteration to resolve the system into a pressure-

based operating point. During the initial step, no pressure data is available, so the

simulation uses the standard flow-request logic to determine a system flow rate. At the

end of this step, the total loop pressure drop is calculated. In subsequent iterations,

the latest pressure drop is used to resolve the pump to a pressure-based operating

point on its curve. During each iteration, a new total loop flow is determined based

on total loop pressure drop, while the flow resolution to parallel paths is independent

of these pressure-based calculations.

62



Pressure-based Pumping: Stage 3 A third possibility extends the constant

speed pump curve to allow for variable speed pumping. In this case additional control

parameters are placed in the simulation input specification and at each iteration,

the pump model utilizes lagged flow and pressure drop information, along with the

control parameters, to determine whether to adjust pump speed to then adjust loop

flow conditions.

The pressure-based enhancements were performed as a collaborative effort along

with Phalak (2011) as part of the new solver development project.

2.3.3.3 Summary and Analysis

In the new simulation model, pumps do not follow a behavior that may be expected

when contrasted with pump modeling in pressure-based flow networks. The tech-

nique utilized here provides certain advantages and other limitations, which can be

summarized:

Advantages of this Pump Modeling Strategy

• Fits with the pressure-less system simulation model

• Minimal input requirements

• Logical structure helps ensure robustness

Missing Features

• The base mode for resolving loop flow rate is unrelated to the pressure drop

characteristics of the loop. Section 2.3.3.2 describes the addition of pressure

attributes into the solver, however even with those pressure attributes in place, a

combined solution between system operating point and parallel flow distribution

is not implemented.

• For the base, pressure-less, simulation mode, pumps could be enhanced with an

advanced relationship between efficiency and flow/part loading.
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2.3.4 Controls

Component models are assigned a “flow control type” to be used during loop flow and

parallel flow resolution. This “flow control type” is not directly related to the way

supervisory controls interact with the component to meet setpoints. Rather the “flow

control type” defines the flow priority of different components during flow resolution.

Detail was provided in section 2.3.2.5.

The current section describes the setpoint control classification of components

and how they operate to provide control to the system, as well as introducing the

calculations performed to determine loop demand via the system’s governing equation.

The proposed loop solver is generalized to be capable of solving for any loop-

side in a system of hydronic loops. The loop-side form to be solved is discussed in

section 2.1.3, and shown specifically in Figure 2.3. The loop solver is responsible for

taking an entering boundary condition, and solving the system of component models

to result in a state point distribution and overall loop-side response.

A loop-side may be controlled or uncontrolled. An uncontrolled loop-side can be

considered as a typical demand side. In a chilled water system, the demand side will

consist of chilled water coils. Though these coils may be controlled with valves in

order to meet an air-side demand, they are not generally controlling to meet a target

water outlet setpoint.

In contrast, a controlled loop-side can be considered as a typical supply side. In

a chilled water system, the supply side may consist of a chiller and heat exchangers.

These components are typically controlling to meet a target water setpoint, either at

their local outlet or the overall chilled water supply temperature.

The solver can handle any loop-side, whether controlled or uncontrolled, in the

same manner. In fact, corresponding demand and supply sides can be controlled to

different points, assuming equipment is in place and controls are properly defined.

However, for discussion, the supply side will generally be a controlled loop-side, while
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the demand loop-side is uncontrolled.

2.3.4.1 Governing Equation

In general, the loop solver is trying to control the loop by solving for the loop demand:

q̇demand = ṁCpλ (Tout,setpoint − Tin) +
∑

q̇sources (2.22)

Where:

λ =


1 for heating operation

−1 for cooling operation

(2.23)

The first term on the right hand side of equation (2.22) reflects that the fluid

entering the loop must be brought to a setpoint temperature, which will require

some heat transfer. This demand can be pre-calculated once a loop flow rate has

been determined as described in section 2.3.2.4. The outlet setpoint is not a single

component outlet, but instead it is generally the loop outlet, as shown in Figure 2.11.

Figure 2.11: Typical location of loop setpoint temperature on a loop
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The second term in equation (2.22) represents other sources on the loop, which

are not known at the beginning of a solution step. These sources may be uncontrolled

components, component-setpoint components, or other sources, but to the solver, they

appear as discrete sources. As will be described in following sections, the interaction

between the flow-wise solution and the order of components in the system will prove

to be important in defining the system’s ability to solve the loop to a controlled state.

Once a loop demand is known, it may be dispatched to controlled components based

on different control strategies.

2.3.4.2 Control Classes

Component control can be classified into four categories:

• Uncontrolled

• Component Setpoint

• Loop Setpoint

– Constant Flow Components

– Variable Flow Components

• (EMS/User-Defined)9

This classification is based on the interaction between the loop solver load dispatch

algorithms and the resulting impact the component makes on the loop.

Uncontrolled operation decouples the component’s governing heat transfer equa-

tion from the loop solver solution. The effect of this is similar to an addition to the

independent source term in the governing solver heat transfer equation (2.22). The

solver has no mechanism of utilizing these components in meeting control strategies,

and must monitor the response of these components to ensure the effect is handled

9These components must abide by the rules of the solver-component interface and submit flow
requests in the same fashion as other components, however the method by which these components
affect the loop demand may differ based upon any number of user-defined variations.
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in the remainder of the solution. Typical uncontrolled equipment consists of chilled

water coils and pipes that include heat transfer effects. Although the chilled water

coils are controlled on the air-side, they are typically not attempting to meet a chilled

water target setpoint.

When a component is operating under component setpoint control, it ignores loop-

level controls and tries to meet a temperature setpoint specified at the component

outlet node. The most prominent example of a component setpoint object is a chiller

used in ice (thermal) storage. The chiller may have a target outlet setpoint for freezing

mode and another for when the thermal storage is discharging. The key point is that

these components are not trying to meet a loop demand, but rather their own outlet

setpoint temperature. Generally the solution of the component governing equation

falls into a familiar form:

q̇ = ṁCpλ (Tout,setpoint − Tin) (2.24)

At any point in the simulation, the outlet temperature setpoint is a known value.

It may be constant, scheduled, or determined based on other controls formulations,

however to the component model, this is a known value. The inlet temperature

is a known entering boundary condition calculated from upstream components and

provided by the system solution algorithm. The specific heat will vary with temper-

ature, but is explicitly calculated—it is independent of the current solution. Thus

there are two variables to be solved from equation (2.24): q̇ and ṁ. The mass flow

rate of the component is dependent on design specifications, pumping capabilities

and flow restrictions on the loop. The heat transfer of the component varies with

the inlet boundary condition, the resolved flow rate, and the component’s functional

relationship between heat transfer, flow rate, and temperature difference.

The iterative nature of the loop solver is applied to this component in the following

fashion to provide a solution:
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1. The demand (heat transfer rate) applied to the component is predicted initially

based on a user-specified design flow rate and entering boundary conditions

using equation (2.24).

2. The component will be simulated and may request a flow different from the

design value in order to meet the demand applied to it.

3. The flow in the loop is resolved according to logic described in previous sections.

4. The component is then simulated with a fixed flow rate and will attempt to

meet the outlet setpoint independent of other conditions on the loop.

Note that the component may not hit the outlet setpoint for a number of reasons,

including out-of-capacity conditions and adverse flow conditions.

The effect of component setpoint controlled components on the loop itself is sim-

ilar to uncontrolled operation: a heat transfer rate is added to the loop which the

solver has no means of controlling, equivalent to an addition to the source term in

equation (2.22). Thus the solver must monitor the effect these components have on

the loop in order to ensure that broader control strategies can be applied properly.

Loop setpoint controlled components operate closely with the loop solver to meet

the broad needs of the loop. Uncontrolled and component setpoint operation com-

ponents are treated as source term contributions to the solver, as the solver cannot

utilize these components in overall loop control. In contrast, loop setpoint compo-

nents are tightly controlled by the solver to control a loop setpoint temperature. Loop

setpoint components are governed by the following equation:

q̇demand = ṁCpλ (Tout − Tin) (2.25)

While this governing equation of loop setpoint components may look similar to

the component setpoint operation equation (2.24), there are subtle differences. As

with the other component types, the inlet temperature is a known value, and the
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specific heat is essentially a fixed (explicit) value for a given step.

The first major difference is that for loop setpoint components, the heat transfer

rate is applied by the loop solver as a portion of the loop demand. This is prescribed

based on current control strategies and constraining conditions (limiting tempera-

tures). Dispatching the load is a flexible aspect of the simulation model in that

the total loop demand can be distributed to multiple components using one of three

supervisory control schemes:

Uniform: All components are loaded equally among all available equipment.

Optimal: The components are loaded in an attempt to meet a part load that is

defined as optimal in user input.

Sequential: Components are loaded incrementally, with the first component loaded

fully before any additional components are loaded.

This leaves two variables to be solved from equation (2.25): ṁ and Tout. Once

the flow has been locked by the solver, the mass flow rate is fixed and so the outlet

temperature is simply calculated as the outlet boundary. For cases when the flow

is unlocked, the equation is closed by constraining either one of these values based

on operation. For components which have no mechanism for providing flow control

(constant flow), a design flow rate is always requested from the loop flow resolver.

In this case the outlet temperature is simply the result of solving the equation. The

other option is for components which have the ability to control their own flow rate.

In these cases, the components must again have a target outlet setpoint, such that the

mass flow rate can be calculated from the above equation. Note there is a similarity

and a distinction between two individual situations, in which both cases the entering

temperature and outlet temperature (setpoint) are specified by the solver and control

strategies:

Component Setpoint: These components are utilized to meet a local component

outlet setpoint.
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Mass Flow Rate: Component setpoint controlled components can have a

design flow rate that is constant.

Heat Transfer Rate: The heat transfer rate is solved in order to meet the

local outlet setpoint condition.

Loop Setpoint Component with Variable Flow: These components are used

to meet loop-level demand, but require a setpoint on the component outlet.

Mass Flow Rate: The mass flow rate for this component is variable.

Heat Transfer Rate: The heat transfer rate is imposed by the control strate-

gies as part of the load dispatch calculations, which may include distribu-

tion to multiple components.

2.3.5 Flow-wise Simulation Mechanics

This section describes the actual simulation mechanics for a given loop-side. This

includes the following discussions:

• The flow-wise simulation approach (Section 2.3.5.1)

• Handling concurrent control strategies (Section 2.3.5.2)

The goal of this section is to close the discussion of how a single loop-side is

simulated while attempting to maintain control.

2.3.5.1 Flow-wise simulation approach

The approach for component simulation and the loop solver have been described,

including the mechanisms for providing flow resolution (Section 2.3.2), and handling

loop demand (Section 2.3.4). The method used in the proposed ICE-B model to

actually connect the system of components to provide a full solution is described

here. The existing simulation model did not perform a pure flow-wise solution, instead

relying on simulating certain component types before other component types which
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caused issues with out-of-date boundary conditions being employed on component

models.

In the proposed model, components are always simulated in a flow-wise fashion.

From a starting point on the loop, an inlet boundary condition is prescribed, and

this is provided to the first encountered component. This component will use this

well-defined inlet boundary and other conditions to perform calculations that result

in, among other things, an updated outlet state point. This is then passed to the

downstream component, which is simulated next. This continues until the entire loop

has been simulated. This completes one iteration of the loop solution. This successive

substitution continues until the loop is converged, which is described in more detail

in section 2.3.6.

The flow-wise mechanics do not only apply to single flow paths, but also to parallel

paths, which are encountered in many loops. While the flow resolution of these

parallel networks was described in section 2.3.2.5, the loop demand and heat transfer

implications of a flow-wise solution was not. During the simulation of components on

a loop-side, a splitter (see Figure 2.3) has the responsibility of providing meaningful

boundary conditions to the inlet components on each of the parallel paths. Splitters

are modeled as ideal objects, so the temperature passed to components downstream

of the splitter is exactly the splitter inlet temperature. The flow rate distribution is

specified by the flow resolution engine, however, the splitter will also pass metadata

such as maximum available flow to ensure that components abide by restricted flow

conditions and pump capabilities.

Like splitters, mixers are ideal objects, but must perform calculations to provide a

correct inlet boundary condition for downstream equipment. The mixer outlet mass

flow rate is a simple solution to the continuity equation:

ṁmixer,outlet =
∑

ṁmixer,inlet (2.26)
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The temperature is also a simple solution, this time to the energy equation, which

reduces to a flow-weighted average temperature:

Tmixer,outlet =

∑
(ṁmixer,inletTmixer,inlet)∑

ṁmixer,inlet

(2.27)

By simulating the entire loop flow-wise, both components and these connectors,

the result is a fully updated loop, or one step in the simulation algorithm.

2.3.5.2 Concurrent Control Strategies

Components are simulated flow-wise as described in the previous section. Each flow-

wise sweep is divided into a maximum of three possible phases, based on the diversity

of control strategies in place on the loop-side. The use of multiple concurrent control

strategies (loop-setpoint, component-setpoint) on the same loop-side is a new feature

in the proposed ICE-B model.

Series Path Consider a loop-side that contains a set of uncontrolled/source term

components, followed downstream by a set of loop-side components, followed by an-

other set of uncontrolled/source term components. This is shown in Figure 2.12a.

The simulation moves flow-wise along this series path, simulating component models

as they are encountered.

The flow-wise simulation begins at the loop-side inlet, simulating any and all

source-term type control components (uncontrolled, component-setpoint) and con-

tinuing until a loop-setpoint component is found. At this point, the components

which have been simulated are highlighted in Figure 2.12b. The components simu-

lated will have affected the loop demand source term, and this is monitored by the

solution algorithm, to eventually achieve an adjusted source term. Once a loop set-

point component is encountered, the entire loop demand (sum of the original loop

demand plus any source additions) can be dispatched to all available loop-setpoint

72



(a) Series loop with source components, loop-level controlled components, and additional
source components

(b) Highlighted region shows components which have been simulated in the first step, which
includes any upstream source term components

(c) Highlighted region shows components which have been simulated in the second step,
which includes all loop-level controlled components

(d) Highlighted region shows components which have been simulated in the final step, which
includes any downstream source term components

Figure 2.12: Demonstration of the three steps in a loop-side with multiple concurrent
control strategies
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controlled components. With the load dispatched, the simulation moves flow-wise

through the loop-setpoint controlled components. When complete, the components

which have been simulated are highlighted in Figure 2.12c. If there is sufficient ca-

pacity, the loop is able to meet the outlet setpoint. However, the simulation continues

flow-wise, and if further source-type components are encountered downstream of these

controlled components, the loop may no longer meet setpoint. The solver is fully ca-

pable of handling this situation because there may be occasions where uncontrolled

components such as economizers may be optimally placed at various locations around

the loop. At this point, the highlighted components in Figure 2.12d represent that

the entire loop-side has been simulated.

Parallel Paths The previous discussion related to the three phases of component

simulation in an attempt to provide a controlled solution by the loop solver, even on

loops with diverse, concurrent control strategies operating. This was described within

the context of a single flow path. The same approach is utilized in situations with

parallel flow paths. The approach taken to accommodate this is to force each phase

of the solution to propagate through all available paths before moving to the next

phase. This is an important feature of the implicit solution mechanics and allows

the solver to provide a controlled condition in all possible cases. This feature can

be demonstrated using a parallel loop as shown in Figure 2.13, with the following

shorthand:

U: Uncontrolled component

CSP: Component SetPoint control component

LSP: Loop SetPoint control component

The basic loop is first shown in Figure 2.13a. The loop contains a variety of com-

ponent types. This may seem like an exotic loop configuration, but consider that

uncontrolled equipment may consist of economizing or free cooling heat exchang-
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ers, component setpoint components may represent chillers that provide specific feed

temperatures to thermal storage tanks, and loop setpoint components may be the

components used to provide an overall chilled water supply temperature. The loop

shown may appear with an unusual arrangement of components, but is designed to

exercise the solver and demonstrate the three phase solution clearly.

(a) Overall Loop Topology (b) Phase 1 Solution Domain

(c) Phase 2 Solution Domain (d) Phase 3 Solution Domain—Done

Figure 2.13: Three phase solution domains

Before any components are simulated, the inlet condition of the loop along with

the loop setpoint temperature are used to evaluate an initial loop demand, the first

term in equation (2.22). This baseline demand is then adjusted via the source term

as other components are encountered, whether in series or in parallel.
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The first phase of the solution involves simulating all source term type compo-

nents on the loop in a flow-wise fashion. The components simulated during this phase

are highlighted in Figure 2.13b. The inlet leg of the system contains an uncontrolled

component, which is simulated first. This component may add or remove heat from

the loop. The solver monitors this and adjusts the remaining loop demand accord-

ingly. The solution moves through the flow splitter and begins simulating the parallel

legs. The first leg, first component is a component setpoint operation component,

thus it is also simulated as a source term component. The solver continues to adjust

the remaining loop demand after this component is simulated. The next component

is a loop setpoint control component, so at this point the solver stops solving on this

flow path, instead moving to the next parallel leg. On this leg, the first component is

loop setpoint, so again the solution stops and moves to the next parallel leg. On the

third leg, the only component is component setpoint control, so the solver simulates

this component and continues to the mixer. However, the solution does not propa-

gate through the mixer until all parallel legs are completed to ensure the mixer has

correctly updated boundary conditions available.

At this point the first phase is complete, so the solver has a well-defined predic-

tion of the loop demand using the baseline and adjustments via the source term. The

second phase then proceeds to simulate loop setpoint control components. The sim-

ulation begins back at the first parallel leg where it left off. As the first loop setpoint

control component is encountered, load is dispatched to all available loop setpoint

control components in a uniform, sequential, or optimal fashion (see section 2.3.4.2).

The simulation then simulates all loop setpoint components in a path-by-path flow-

wise fashion until the highlighted state of Figure 2.13c is attained. Note that the

solution stopped in the second parallel leg when an uncontrolled component was en-

countered.
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At this point, the second phase is complete. If there were no components re-

maining on the loop, and assuming that there was sufficient capacity and a proper

controls implementation, the solver would have utilized the controlled components to

meet a loop setpoint condition. If, however, there are remaining non-loop setpoint

components on the loop, the solver enters phase 3. Phase 3 involves the solution of

all remaining components on the loop. For this loop, one uncontrolled component

required simulation in the second parallel leg, followed by the mixer, followed by an-

other uncontrolled component on the outlet leg. If these components affect the loop

by adding or rejecting heat, the system may not meet setpoint, but the solver will

have successfully simulated the loop-side.

At this point, the loop has been simulated as shown in Figure 2.13d. Note this

design has an inherent restriction of the placement of component types. Component

setpoint or uncontrolled components may not separate loop setpoint components on

a single flow path. This is because the effect of these other components are not

well-defined and the solver cannot predict their effect on the loop. Thus if any loop

setpoint components were encountered during phase 3, the solver would issue an error,

alerting the user of an invalid topology.

2.3.6 Supplemental Feature Discussion

The methodology employed in the proposed ICE-B model to simulate a single loop-

side, for both flow and heat transfer solutions, has been established. This section now

discusses remaining pieces to the entire simulation model that did not appropriately

fit in the discussion elsewhere, and/or were not developed predominantly by this

author, but are still relevant to closing the discussion, and providing full content for

the forthcoming model demonstration (Section 2.4).
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2.3.6.1 Component/Loop Sizing

Many components and systems within the EnergyPlus simulation program can be

autosized. These include zone equipment sizing, air loop component sizing, and plant

sizing. In this way, a building may be simulated in any climate, and the required

system components can be sized to match the load requirements of the zone. This

allows for easy parametric studies, especially those that involve climatic variation.

As an example of enhanced sizing, the building energy management system (EMS)

in EnergyPlus allows systems to be sized to the appropriate climate, and then user-

defined programs can be utilized to increment component sizing to meaningful values

(tonnage increments available for component types, for example).

As a part of the ICE-B model development, the sizing routines were updated,

however not by this author. As such they are not described in great detail, but are

worthy of a brief overview as they are a core aspect of the simulation environment.

In the existing model, component sizing took place in a single solution step: peak

plant demand conditions were tallied once in order to size required plant loop flow

rates, while desired design delta temperatures and related information were used to

size component capacities. The new plant simulation algorithms provide an improved

integration between air loops and multiple plant loops, and as such the sizing is also

improved. The sizing algorithms utilize an iterative approach to provide a solution

to the sizing problem. The plant loops are simulated in the predetermined calling

order, and at each update, the demanding components will request a flow rate from

the plant, which will in turn cause the plant components to size to a certain capacity.

If this component is then connected to other nested loops, the updated capacity will

affect the sizing of the nested loops. This iterative approach ensures that the entire

system of loops is able to size to a meaningful solution, which provides a much better

estimate over the straight-through approach.
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2.3.6.2 Common Pipes

Common pipe simulation is a major aspect of the thermal plant model that is utilized

in many real system applications. This was another aspect of the upgrades to the

simulation model that was not performed directly by this author, but is coupled with

the plant simulation. The common pipe provides a way for demand (secondary) and

supply (primary) systems to operate at different flow rates as a measure to reduce

excessive energy use.

This is modeled by solving a system of equations. In the controlled case, there

are six equations and six unknowns which govern the common pipe simulation, con-

sisting of mass balances at each node on the system, an equation governing the loop

capacitance tank, which is connected directly to a node, and also a setpoint node

which has a trivial update equation. This system is solved iteratively at each plant

iteration to achieve local convergence and also convergence within the plant system.

2.3.6.3 Loop Capacitance

In previous versions of the plant simulation algorithm, the purpose of loop capacitance

was two-fold:

1. Effectively represent the physical capacitance of the loop

2. Provide stability to the loop simulation algorithms.

Loop capacitance can be considered as an effective mass of the system. The plant

simulation solver is a quasi-steady solution. To provide a massive, transport delay

effect, the loop capacitance was historically modeled as a single well-mixed tank that

existed at one interface between the demand and supply loop-sides. This has been

improved in two ways in the proposed ICE-B model:

1. The tank can be split into two separate tanks, one placed at the inlet of each

loop-side. This was performed to spread out the capacitance beyond one single
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point in the system.

2. The tanks are now the sink for the inclusion of pump heat in the simulation

model. In the existing model, the pump heat was added directly at the pumps,

providing an instantaneous temperature increase from pump inlet to pump out-

let. In reality, the energy added by the pumps is not instantaneous, but rather

is added as kinetic energy to the fluid. This energy is released as friction and

diffusion around the system. In the proposed ICE-B model, the pump heat is

now lagged behind the simulation by one system time step and placed as a heat

gain on the loop-side tank.

In addition to the tank models, a transport delay model based on actual pipes

which can be distributed around the loop in more detailed fashion was added to the

EnergyPlus library. This discussion is found in chapter 3.

2.3.6.4 Loop Convergence

The simulation model uses iteration to solve the system of state points in an implicit,

successive substitution manner by simulating component models until convergence is

obtained. Iteration and convergence control are implemented by checking for devia-

tions between the outlet of one loop-side to the inlet of the connected loop-side, and

by monitoring a number of state points around the loop. The thermodynamic state

is checked, and in addition, the maximum available flow is continuously monitored to

check for disagreements between the loop and components. In the proposed ICE-B

model, this has been enhanced to leverage the new mass flow request system. When a

component continuously requests more flow than available and adjusts its flow request

between iterations, the loop may continue iterating unnecessarily, so monitoring this

is important, and checks are employed to break the continuous loops.
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2.3.6.5 Coupled Loops

Most of the discussion here has been for a single loop-side, as this solver is designed

flexibly to accommodate any single loop-side. Some discussion went further to include

full loops (two loop-sides). In a real system, and in the simulation model, multiple

loops may be used and coupled together. Consider a simple chilled water system

including a condensing loop with a cooling tower as shown in Figure 2.14.

Figure 2.14: Coupled loops in a condensing chilled water system

In the existing EnergyPlus model, the nested nature of coupled loops is not rec-

ognized. Instead, loops are simulated in order of type:

1. Simulate all plant demand sides

2. Simulate all plant supply sides

3. Simulate all condenser demand sides

4. Simulate all condenser supply sides

The proposed ICE-B simulation respects the interdependence of these loops when

determining a proper simulation order of all the loops, however components that cou-

ple loops together are treated the same as any other single loop component by the

solver. The coupling is performed by the component model itself using the SetCom-

ponentFlowRate interface as described in section 2.3.2.3. The component is able to

provide flow requests and heat transfer impacts on both of the connected loops so
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that as each loop is simulated it will have up-to-date requests. Ultimately through

iteration these flow requests converge, thus converging the entire system of loops.

2.3.7 Summary

The model methodology includes many different aspects, which are implemented to

simulate a diverse set of possible system topologies and configurations. The methodol-

ogy discussion began by introducing the idea of a component model, including model

responsibilities and the type of governing equations to be solved by these components.

The discussion then shifted to the flow network solution, and how this is performed

using a logical iterative approach of flow-request/flow-resolution rather than requir-

ing a full pressure network solution. Pumps are implemented in a different manner

than in pressure-based modeling environments, and the discussion of these models

included the contrast between flow rate and rotation speed, constant and variable

flow, and pump banks. A discussion of how a pressure simulation was layered over

the base solver was provided. The final discussion included the way components and

the solver are actually coupled, followed by big-picture loop simulation mechanics

and topics which did not fit elsewhere, but are important to providing an overall

understanding of the proposed simulation model.

This methodology was implemented as an overhaul of the previous central plant

simulation engine in EnergyPlus and was released to the public domain in 2011 by the

United States Department of Energy (United States Department of Energy, 2012).

Before this upgrade, there was a high level of burden put on developers in maintaining

several pieces of the plant simulation engine. The most notable and frequent bugs

related to enforcing continuity in the system. This was due to an inherent flaw that

component models were allowed to specify their flow rate at any time. This was cor-

rected in the new model design by providing the interface between component models

and the solver which allowed proper flow request/resolution logic to be enforced, and

82



ensure that the system achieves continuity under all conditions. After the release of

the new engine (and brief shakedown period), the number of issues lodged by users

diminished to nearly zero. This has reduced the maintenance burden and allowed de-

velopers to focus on new features and enhancements rather than struggle to maintain

poor code.

2.4 Model Evaluation

This section demonstrates the ability of the new thermal plant simulation model

in EnergyPlus to simulate physical systems. Each case consists of a description of

the physical system, followed by model abstraction, a demonstration and analysis of

results, and conclusions. The process of abstracting each system into model form

includes:

• System Topology: the placement of components and flow paths on the simula-

tion loop and how it is similar and different to the physical system

• Components: the selection of component models to match the physical system,

and what components are missing/implied in the simulation environment

• Controls: how physical system control strategies are employed in the simulation

environment, and consequences of using specific strategies

2.4.1 Case A

The first central plant system to be analyzed is shown in Figure 2.15a. The schematic

includes two chilled water coils which comprise the demand side and two chillers

which comprise the supply side. Each chiller has a dedicated constant speed pump

and valve. The chillers are controlled using a fluid temperature measurement at their

outlet. The coils each have a bypass leg to meet a zone air setpoint. While there are

two coils shown, the diagram implies that others may exist, but this discussion need

not include these to demonstrate the abstraction process.
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(a) Physical system schematic, courtesy of Steve Tay-
lor (used with permission)

(b) Simulation Loop Schematic

Figure 2.15: A constant speed pumping system with multiple chillers and multiple
coils; dedicated pumps
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2.4.1.1 Topology

The first step in abstracting this physical system into model form is determining how

the system will actually “look” in EnergyPlus. In EnergyPlus input specification,

there is a distinction between demand and supply sides of the fluid loop (although

the underlying solver is generalized for any loop-side). The input specification for

this case is included in full in Appendix A. In this physical system, the demand side

consists of two coils in parallel, with no common bypass, although each coil has a local

bypass leg to control flow. Since there is at least one bypass path on the demand

side, the model topology is required to include a common bypass. The supply side

consists of two parallel legs that each have a pump, flow control valve, and a chiller.

This fits well with the simulation loop topology, which was described in section 2.1.3.

Piping segments are added in specific points in the loop in order to “connect” these

components together. There are also mixers and splitters included to connect the

parallel sets to the rest of the loop. The resulting simulation loop topology is shown

in Figure 2.15b.

2.4.1.2 Components

The component models used in the simulation will determine the energy transfers

and efficiency of the whole system, so proper selection is important. For this system,

there are only four simulation components: the coils, the pumps, the chillers, and

connector components (pipes).

• Coils: The physical coils are chilled water to air coils. While the coil simulation

models include the ability to request a varying amount of flow in order to exactly

meet the zone setpoint, approximating the use of the bypass valve in the physical

system, the input is simplified and uses a load profile object. The load profile

objects are specified in the input listing at lines 303 and 345. The load profile

input consists of a scheduled flow request, heat transfer rate addition to the
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loop, and inlet and outlet node names. The simulation management uses these

names along with other topology input specification to determine the flow-wise

order and placement of components along each loop-side.

• Pumps: The pumps are constant speed in the physical system, which does not

indicate a constant flow rate, but instead a constant pump rotational speed.

The constant speed pump model in EnergyPlus is closer in nature to a constant

flow rate pump model (see section 2.3.3). The pump will try to run at a design

condition unless there is a flow restriction around the loop that won’t allow

it to run at full design flow. The pumps are specified in the input listing at

lines 165 and 207, and include design flow, pressure head (for calculating energy

use only), efficiencies, and inlet and outlet node names.

• Chillers: The chillers can modeled using, for example, curve fit or parameter

estimation forms. Certain model forms fit certain chiller types better. The

model selected for the current work consists of a constant COP, which minimizes

the overhead in creating inputs for the system model. The system simulation

relies on a predefined flow direction in the loop, so the check valves are not

required. The chillers are specified in the input listing at lines 176 and 218, and

include design flow, COP, capacity, and inlet and outlet node names.

• Pipe Connectors: The pipes are specified in multiple places around the loop,

including the bypass components, and so there are multiple locations in the

input file where pipes are specified. For these simple components, the inputs

include only a name, and inlet and outlet nodes.

2.4.1.3 Controls

This physical system is controlled via four temperature measurements: fluid temper-

ature at the outlet of each chiller and a zone air temperature corresponding to each

coil. For the coils, the zone air temperature controls a three-way valve which allows
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some fluid to bypass the coil to attempt to meet the zone air setpoint. A single bypass

leg in the model abstraction handles all bypass flow. For the chillers, the fluid outlet

temperature itself is a setpoint which is used to control chiller compressor cycling.

The simulation model can utilize similar controls. The valves for the coils are im-

plicit in the coil model formulation. The coils request fluid flow from the plant at a

variable rate without explicitly changing valve settings. The coil controller attempts

to optimize this flow request to exactly meet the zone demand (and therefore allow

the zone to meet the setpoint temperature). For the supply side, the flow valves

are again implicit, due to the predefined flow direction in the model. The chiller

control can be set to an outlet temperature setpoint. In the simulation model, this

is termed “Component setpoint control.” The chillers can also be staged to oper-

ate under various staging strategies. These strategies include a sequential operation

where the chillers are brought on one-by-one to meet demand. Uniform loading is

also possible which brings all equipment on equally to meet demand. Optimal loading

is also implemented to attempt to load components to an optimum part-load ratio

when possible. (See section 2.3.4 for further information on controls.)

2.4.1.4 Demonstration 1

The physical system was modeled in EnergyPlus using load profile objects to mimic

the coil flow requests and heat demands. This simplifies the inputs such that a full

zone and air-system implementation are not required. The load profiles use scheduled

flow requests and heat demands. If the loop cannot meet the demand of the load

profiles under certain conditions, it will be equivalent to not being able to meet a

zone setpoint. The chillers were modeled as electric air-cooled chillers to alleviate

the need to add a secondary condenser loop and tower/ground heat exchanger to the

system. A dedicated pump was placed on each chiller leg and modeled as a constant

speed pump.
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The scenario was set up so that the load profiles would add demand to the loop,

at a varying rate through a given simulation day, with flow rates varying along with

the demand. The chillers were both controlled to an outlet temperature setpoint,

and set to be staged sequentially. Only the equipment necessary to meet the demand

should run, with the rest of the equipment remaining dormant.

The outputs from EnergyPlus include:

1. Load Profile Demand and Actual Heat Transfer Rates

2. Load Profile Requested and Actual Mass Flow Rates

3. Chiller Mass Flow Rates

4. Chiller Evaporator Fluid Mass Flow Rates

5. Chiller Outlet Temperatures and Mixed Chilled Water Supply Temperature

The outputs from each of these classes are plotted in separate figures in Fig-

ure 2.16.

The first plot in Figure 2.16 shows the load profile (scheduled) demand and (ac-

tual) heat transfer rates. The demand and heat transfer rates are equal throughout

the simulation for each load profile (though load profile #1 has a higher (more nega-

tive) demand in the morning, to mimic load diversity).

The second plot shows that the load profile (scheduled) flow requests equal the

actual operating mass flow rate.

The third plot shows the chiller fluid mass flow rates. Note that even when the

demand is low in the morning, and the first chiller alone should meet the demand,

both chillers ramp to full flow capacity. Also note the difference between the sum

of the load profile flow rates and the sum of the chiller flow rates. The difference

indicates that there is bypass flow on the demand side. The reason for this excess

flow will be explained and corrected in demonstration 2.

The fourth plot shows the chiller fluid heat transfer rates. Note that instead of

the first chiller ramping up to take the loop demand and the second staying off, both
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Figure 2.16: Results: Operating on a component setpoint scheme
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chillers reject heat from the loop at equivalent rates, which vary throughout the day.

The heat transfer rate does not exactly match the loop demand added by the load

profiles, but follows a similar trend. The imbalance is due to two things:

• Pump heat gain, which causes a higher heat transfer rate, though this is a small

fraction of the loop demand (in this case)

• Loop capacitance, which causes the dampening effect seen as the loop conditions

vary. This loop capacitance, along with pump heat, also causes the initial pick-

up load which must be rejected from the loop to bring the loop to operating

temperature.

The fifth plot shows temperatures at the outlet of each chiller and the mixed chilled

water supply temperature. Note that anytime the loop is active, the temperature at

each chiller outlet is exactly the setpoint temperature, which when mixed will be the

same temperature, so that all plot results overlay each other.

2.4.1.5 Analysis 1

The reason for the unexpected excess flow is the localization of the chiller controls

and pump model mechanics. The chiller component-setpoint controls are simple:

If the loop is on already, turn on chiller and attempt to meet outlet set-

point.

When either one of the load profiles turn on, flow is requested and the loop will turn

on. With the loop on, the chillers will both attempt to meet their outlet temperature

setpoint. Since flow is available, each chiller’s dedicated pump will turn on to meet

this flow request. Since the pumps are constant speed pumps, they both ramp up to

full speed. This induces a “full-flow” condition on the supply side of the loop. When

the flow comes back to the demand side, the bypass accepts the excess flow, allowing
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each load profile to only take their requested flow. This brings the entire loop to full

flow, and both chillers are running to meet their outlet setpoint.

As mentioned, the reason for this running condition is the localization of chiller

controls and pump model mechanics. Firstly, the pumps are dedicated constant speed

pumps. When any flow is requested of them, they offer to run. Since the loop is not

restricted (a valve physically closed, for example) both pumps can run at full capacity.

With the loop turned on, and the chiller controls localized to the chillers themselves,

the only option the chillers have is to turn on and try to meet their local outlet

setpoint. The setpoints may be scheduled in EnergyPlus, but optimal setpoint reset

that would achieve desired chiller sequencing must be abstracted in the EnergyPlus

model as a loop-setpoint. The loop-setpoint acts as an ideal temperature reset control

for the system shown in Figure 2.15a.

2.4.1.6 Demonstration 2

To improve this model, a supply side loop control scheme is utilized. Instead of

each chiller responding individually to try to meet their specific outlet node setpoint

temperature, a mixed supply water temperature setpoint is employed in contrast

to the localized chiller outlet setpoints in the initial version. This differs in that a

total loop demand is then distributed to the individual machines in order to properly

distribute the load. The chillers will not turn on solely to satisfy their local outlet

setpoint, but only run when the demand requires them to run. The results of changing

from a component setpoint control to a loop setpoint control is shown in Figure 2.17.

In Figure 2.17, the first plot, showing load profile demand and heat transfer rates,

is exactly the same.

The second plot shows that now the load profile mass flow rate requests are still

equal to the actual mass flow rate.

The third plot shows the chiller fluid mass flow rates. In the morning hours, when
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Figure 2.17: Results: Operating on a loop setpoint scheme
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the demand is capable of being met with a single chiller, only one chiller runs. During

the afternoon when there is a major heat addition to the loop by the load profile,

both chillers must run. Note that whenever either chiller is running, it runs at full

design flow rate. This is due to the constant speed pumps assigned to each chiller.

Even if the chiller would like to run at a part load flow rate, the pumps will always

try to run at design. Note also in this plot that there is a spike at about the 10:45

mark. This is an interesting artifact and due to the loop capacitance. Initially, some

of the heat being added to the loop by the pumps and the load profile is stored by the

loop capacitance model. At this point in the simulation, with a transient condition of

the second load profile turning on, enough heat is added back into the loop to require

the second chiller to turn on. Once this initial pick-up load is rejected and the loop

temperature gets back under control, the first chiller can then meet the loop demand

and the second turns off until again needed in the afternoon.

The fourth plot shows the chiller evaporator heat transfer rates. The chillers are

now not being equally loaded to meet their outlet setpoints. Instead they are being

loaded by a dispatch algorithm to meet the total loop demand. Chiller 1 is loaded

first with a brief pick-up load followed by first-order responses to changes in loop

demand. These curved responses have little to do with the actual chiller response,

and are instead artifacts of the loop capacitance model (tank). The second chiller is

shown to respond when the loop demand is high enough to necessitate it, but is never

loaded to full capacity.

The fifth plot shows temperatures at each chiller outlet and the mixed chilled

water supply temperature. Now that the chillers are controlling to a loop setpoint, the

individual chiller outlet temperatures have been optimally “reset” at each timestep.

Chiller 1 often has a temperature below the chilled water setpoint temperature, to

accommodate the mixing that occurs with the fluid passing through chiller 2, which

is often just a floating system temperature. The loop is able to control to the mixed
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(chilled water supply, for example) setpoint temperature through the entire day when

a load is present.

2.4.1.7 Analysis 2

With constant speed pumps dedicated to each chiller, when either chiller comes on,

the full flow of the pump will be present. This is independent of the flow being

requested by the demand side. When this extra flow passes through the demand side,

the flow resolution algorithm distribute the excess flow to the bypass leg. This allows

the supply side components to run at a fixed flow rate, while allowing the demand

side components to run at a variable flow rate; all while still maintaining continuity

around the loop. This is similar to how primary-secondary systems are commonly set

up, though in those cases, each side of the loop will have a pumping setup.

2.4.1.8 Demonstration 3

At this point, the loop is behaving as expected based on the system schematic, and

intuition about the system. However, further advances can be explored to reduce the

energy use of this system. One obvious measure would be the addition of variable

speed pumping. This would reduce the excess flow around the loop and only run at a

required part load ratio. Variable speed pumping in the simulation is interpreted as

variable flow. The pump is capable of responding to flow requests around the loop,

rather than trying to always run at design flow. The results of using variable speed

pumping are shown in Figure 2.18.

In Figure 2.18, the first and second plots are the same as the last versions. The

load profile heat transfer rates and mass flow rates are also exactly equal to the

requested variables.

The third plot shows the chiller fluid mass flow rates. The chillers are brought on

sequentially to meet the demand, and operate at the flow rate required to meet the
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Figure 2.18: Results: Operating on a loop setpoint scheme with variable speed pumps
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demand. In fact, the chillers will only run at the flow requested by the load profile.

This is equivalent to the chillers meeting both the loads and flow requests of the coils

in an actual system. Previously, with a constant speed pump system, any additional

load caused the pumps to come on to full design capacity, which resulted in a large

heat addition to the fluid, which caused spikes. With this variable speed system, the

pumps are ramped up smoothly which avoids the spiking problem, although small

pick-up loads are still encountered and expected.

The fourth plot shows the chiller heat transfer rates, which are similar to the

previous version, only smoothed out due to the variable speed pumping.

The fifth plot shows temperatures around the loop. Note that during the first

portion of the morning, the second chiller is not running, but still reports a decreasing

fluid temperature as the entire loop is cooled. In the afternoon, chiller 1 also shows

some subcooling below the setpoint in order to properly mix with the second chiller

and ultimately hit a mixed chilled water supply temperature setpoint.

2.4.1.9 Analysis 3

The variable speed pumping operation reduced the excess flow conditions around the

loop which would conserve a significant amount of energy in a real system. The use

of variable speed pumping also smoothed system transients in the simulation model,

though analogous improvement in a physical system is not under discussion here. At

this point, the components are meeting demand without excess flow or heat transfer

in the loop, so increasing system efficiency can only be achieved by increasing the

efficiency of individual components.

2.4.1.10 Conclusions

Abstracting from a physical system to a simulation model required initially analyzing

the system topology, followed by a selection of components, followed by implementa-
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tion of controls. By selecting controls and components exactly to match the physical

system, a functional simulation model resulted, but did not operate as one would

expect. The system was inefficient, with extra components running and excess flow

around the loop. By taking time to implement controls based on an analysis of the

intention of the system, an improved abstraction resulted that operated much more

efficiently. Finally, a test study was performed that added energy efficiency to the

system using variable speed pumps. This showed further energy savings, but was not

a part of the original physical system.

A direct path from physical systems to simulation models may not exist, but

instead requires a deeper analysis of the intention of the system to provide an accurate

and suitable simulation model. In the next section, the procedure is repeated for a

slightly more complex system. The level of detail will be reduced as substantial detail

was included in the current section, which can be used as a reference.

2.4.2 Case B

The following demonstration is performed similar to case A, only with a different loop

topology that could be considered more complex. The physical system schematic is

shown in Figure 2.19a. As with the previous loop, there are two coils, and two chillers.

The most dramatic change with this loop is the pumping setup. Instead of each chiller

having a dedicated pump, the supply side shares a common pumping setup, which is

shown as a bank of headered pumps, each with a check valve to avoid recirculation,

and the option of variable speed drives. The demand side also has a dedicated pump

bank which will be variable speed to meet the demands of the coils. The mismatch

of flow between loop-sides is balanced by a common leg. This has the benefit of

allowing each side to run at a distinct desired flow rate to minimize excess flow and

maximize energy savings. The chillers are again controlled to an outlet fluid setpoint

temperature. The chillers have isolation valves to ensure that the flow is directed to
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the proper chiller. The coils are also controlled to a zone air setpoint temperature.

In this case, the coils do not have a local bypass leg to meet the setpoint, instead

relying on a simple valve along with the variable speed loop pumping to meet demand

properly.

(a) Physical system schematic, courtesy of Steve
Taylor (used with permission)

(b) Simulation Loop Schematic

Figure 2.19: A constant speed pumping system with multiple chillers and multiple
coils; dedicated pumps

2.4.2.1 Topology

In this physical system, the distinction between demand and supply sides is again

clear, with the demand side pumps and coils translating directly into an EnergyPlus

loop-side. The supply side is similar, with supply side pumps and chillers. Banks

of pumps are considered as a single object inside the simulation, so they need only
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be represented by a single component (though they are drawn into the simulation

schematic for clarity). The interesting difference in topology for this loop is the

addition of a common pipe. This allows the demand and supply sides to operate

at different flow rates concurrently to maximize efficiency. In the simulation, the

common pipe is not a distinct object, but rather in inherent optional part of the core

simulation topology. The resulting simulation topology is shown in Figure 2.19b.

2.4.2.2 Components

The component models used in this case are the same as the previous case for the

coils (load profiles) and chillers (air-cooled). The pumps are different in that they

are now pump banks. These objects consist of any number of similar pumps working

in parallel. Pump staging can be performed uniformly or sequentially, and the pump

bank can be variable speed. In this case, the total pump bank flow rate is varied, and

the individual pump operation is determined after the total flow rate is determined.

2.4.2.3 Controls

The physical system is controlled in a similar fashion to the previous loop. The

difference on the demand side is that the coils do not have local bypasses to control

to a zone air setpoint, but instead have a simple valve and rely on the variable speed

pumping to meet the varying flow requirement. In the simulation, this is the same

as Case A. The coil components still request a flow in order to meet the setpoint.

In the previous case, the only pumps were on the supply side, and so these pumps

respected the demand and supply flow requests in order to meet the overall loop

demands. In this case, the demand side has dedicated pumps, so only these pumps

will be used to meet the coil demand. The supply pumps will operate to meet the

supply side requests. Note that these supply side requests are implicitly responding

to the heat transfer demands imposed on the loop by the coils. The supply side now
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consists of a common pumping bank, instead of dedicated pumps for each chiller.

While the physical system schematic shows the chillers operating to an outlet setpoint

temperature, the previous section described in detail the problems encountered with

this control type in the simulation model. Instead of re-discussing these problems,

this system will be simulated to a loop setpoint to bring the controls to a higher level

and allow the chillers to instead respond to a dispatched load, rather than running

specifically to meet an outlet setpoint temperature.

2.4.2.4 Demonstration and Analysis

The physical system was modeled in EnergyPlus, again using load profiles to perform

the demand and flow requests that would be encountered by the coils. Pump banks

are simply lumped pumping objects in EnergyPlus which post-process the required

flow rate to determine how many of the headered pumps should run. Thus, the first

case run includes a simple single pump object for each loop-side, with a second test

determining the effect of using headered pumps. Since most chiller plants will run a

constant speed supply pump (to meet chiller requirements), that is the configuration

selected here. The demand side is variable speed. The common pipe is set up by

specifying a keyword in the plant loop object definition. This will allow flow to pass

through the common pipe and balance the flow mismatch between demand and supply

sides. The load profile objects were set to load the loop (both in terms of thermal

demand and flow requesting) in the same manner as in the previous case.

The outputs from the simulation include the same as in the previous case, but

with the addition of primary/secondary flow and, in the case case of headered pumps,

the number of pumps running at a given time. For the single pumps case, the outputs

are shown in Figure 2.20.

The first plot in Figure 2.20, showing load profile demand loading, is exactly the

same as the previous cases, with the scheduled and actual demands matching exactly.
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Figure 2.20: Results: Loop B: Single primary/secondary pumps
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The second plot, showing load profile flow rates, shows again that the scheduled and

actual conditions match exactly. This indicates that the pumping systems around the

loop are capable of meeting exactly the flow requests on the loop, without starving

any coils or forcing excess flow through them.

The third plot shows chiller fluid mass flow rates. The supply side pumping is

constant speed, so anytime there is a request on the loop the pumping system will

run at full design capacity. Thus, both chillers show a full flow rate. The fourth plot,

showing the chiller evaporator heat transfer rates, shows that only the first chiller

is loaded initially. In the afternoon, when the demand increases further, the second

chiller gets loaded as well and starts rejecting heat, but only at a part load condition.

The fifth plot, showing temperatures around the loop, shows that the first chiller

must subcool beyond the loop setpoint in order to mix back with the warm fluid

passing through the second chiller, and result in a final mixed chilled water supply

temperature. The general story from this plot is that no matter what the individual

chillers are doing, the supply temperature setpoint is met throughout the day.

The sixth plot, showing primary and secondary flow rates shows that, again, the

supply side flow rate is constant and at full design capacity whenever there is any

requests on the supply side. The demand side, however, varies exactly with the load

profile requests. This resolves back into energy savings in cases where the chillers must

have a constant flow rate. The imbalance in flow is matched with a flow induced in

the common leg.

This was simulated using single pumps for the demand and supply sides. Using

pump banks has the potential to reduce pump energy further, though in many physical

applications pump banks are used also to allow redundancy for maintenance and

failure purposes. In the next case, the pumps are switched to pump banks, with two

pumps each, as in the original system schematic. No other changes are made to the

simulation. The results of this are shown in Figure 2.21.
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Figure 2.21: Results: Loop B: Headered primary/secondary pumps
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In Figure 2.21, the first through fifth plots are identical to the single pump case.

The reason for this is the way that headered pumps are simulated in this model. The

pump banks are simple pump objects which are either variable or constant speed.

Once the required flow is resolved, the number of pumps running in the pump bank

can be calculated. Thus, the constant speed pump bank will try to run at full capacity

whenever there is any demand, and variable speed pump banks will vary the total

flow rate in order to track with demand.

The sixth plot shows an additional report, which is the number of pumps running

in each pump bank. The supply side pumps run at full capacity, so both pumps are

running. The demand side pumps show the pump bank runs with a single pump

throughout the morning, even with that single pump running at a part load rate

in the early loading hours. Eventually, when the load increases, all pumps run at

full capacity, then trail back off in the afternoon. This could be resolved back into

individual pump energy use, and perhaps show a reduction in pumping energy.

2.4.2.5 Conclusions

This second demonstration case was more concise than the first case, given that most

details were similar to the first case. The model abstraction process was similar to

the first case outside of the common pipe simulation and the pump banks. In order

to provide an even closer match to the physical system, the constant speed pump-

ing system would need to be improved on the supply side to respond to individual

chiller demands. This leads to using dedicated pumps for each chiller which was

demonstrated in the previous case.

2.5 Conclusions

A new simulation model has been developed for central plants and other fluid loops

for use in the whole building energy simulation environment EnergyPlus. The simu-
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lation provides accuracy and flexibility suitable for energy analysis while reducing the

computation and input burden of requiring a full network flow solution. The solution

algorithm is robust in ensuring mass and energy balances are obtained, while provid-

ing a broad set of capabilities in terms of control strategies. This is achieved because

the solver treats all component models as control volumes which must interact with

the solver at a high level, utilizing specific interfaces to determine operating points

and other boundary conditions. After a literature review and a detailed description of

the solver, model abstraction studies provided confidence in the model operation and

a glimpse into the process of modeling physical systems with this simulation model.

The simulation model was implemented in EnergyPlus and released for public use in

2011. It is currently being used in simulation studies of buildings around the world.
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CHAPTER 3

Evaluating Fluid Transport Delay in Central Plants for Whole Building

Energy Simulation

Abstract

Transport delay in fluid systems is realized by four mechanisms: the
time delay for transporting the fluid spatially through the system, mixing
within the fluid, thermal diffusion in the fluid, and boundary heat trans-
fer. The interactions between these factors are investigated with a review
of related literature from a variety of sources. Transport phenomena is
discussed within the context of whole building energy simulation. A focus
is determining whether capturing such detailed physics is justified in this
type of simulation environment.

Experimental measurement of transport delay is performed using a hor-
izontal borehole field and high time-scale resolution. This experimental
data is used as a validation source during the investigation of different
modeling approaches in an attempt to bound the effects of delay on a
system response. This preliminary modeling work is performed in a stan-
dalone application using a heat source and a discretized piping segment.
Bounding calculations are provided as the basis for continuing develop-
ment and implementation into a whole building energy simulation tool.
The effects of varying transport model are evaluated in terms of a chilled
water plant simulation case, and shown to, at least in the preliminary
results, be insignificant.
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3.1 Introduction

Transport phenomena within a piping system is characterized by both mechanical

(mixing, transport) and thermal (diffusion and boundary) phenomena. Fundamen-

tally, these effects are induced by the axial and radial variation of properties of the

fluid in the system. These effects are typically blurred by the assumptions in place

in building simulation programs that include fluid loop simulation. The most com-

monly invoked assumption is that at any single axial point in the piping system, the

fluid state is uniform, and can be represented by a mixing-cup condition. This is the

resulting state if the fluid at this cross-section is sampled and mixed together in an

isolated cup (Tamir and Taitel, 1972), or a “mixing-cup”. With this assumption, the

model does not directly contain a representation of the radial property variation of

the fluid at any point in the system.

The current work investigates transport delay in the context of whole building

energy simulation. The effects are seen in the system response, which may have an

effect on the control strategies being employed. In some applications, these effects

may be insignificant, while others may show some significance. The goal of this work

is to provide results from a preliminary study of this effect by modeling the transport

delay in a whole building energy simulation tool and comparing against experimental

data.

3.1.1 Physical Characterization

In order to distinguish between the different physical phenomena in place in a trans-

port situation, each mechanism is investigated individually. In general, the entire

physicality of the system is governed by the continuity, momentum and thermal con-

servation equations. For incompressible flow with no body forces, these can be mod-
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eled with the following set of equations, although this full set includes terms that are

justifiably neglected in many cases:

div~v = 0 (3.1)

ρ
D~v

Dt
= −∇p+ µ∇2~v (3.2)

ρ
Dh

Dt
= div (k∇T ) + µ

(
∂vi
∂xj

+
∂vj
∂xi

)
+ δijλ div~v (3.3)

Applying and numerically solving a system of equations such as this within a real

piping system produces a representation of the physical phenomena in the system.

The viscous and thermal boundary layers can be represented, which eventually cause

mixing and turbulence in the fluid. For the context of building simulation, the com-

putational burden incurred by solving such a large set of equations over a numerical

grid for the sole purpose of predicting the time delay of fluid temperature in a system

is not feasible, and likely not necessary.

At a larger scale, boundary layer effects can be characterized as a set of individ-

ual physical reactions. If these reactions are predicted by a modeling approach that

is based, at least loosely, on fundamental physics (semi-empirical), it can provide a

useful mechanism for evaluating the comprehensive transport delay effects. If fun-

damentals are disregarded, the interactions between effects will be difficult to isolate

and capture in a model. The effects are manifested as four distinct yet interactive

physical mechanisms:

• Physical delay in spatial fluid transfer through the system

• Intra-fluid axial mixing (convective and diffuse mass transfer)

• Intra-fluid axial heat transfer (convective and diffuse heat transfer)

• Boundary heat transfer

Physical delay and mixing are mechanical phenomena. Delay represents the phys-

ical time spent by, or the age of, a particle of fluid as it passes between two points in
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a system. Detailed transport delay effects are modeled using residence time theory.

Mixing is the redistribution of fluid at a given point in the system, driven by turbulent

activity within the flow. If we consider the mixing-cup temperature of the fluid as a

representation of the bulk fluid state at a given point in a system, radial mixing will

not affect the state at any axial point. However, axial mixing can result in a delay

effect.

Internal and boundary heat transfer are purely thermal phenomena. Thermal

diffusion is the energy exchange between particles in the system. Similar to mass

diffusion, radial diffusion will not affect mixing-cup temperature, however axial diffu-

sion will. Boundary heat transfer is the heat addition to the fluid, a convective gain

from a pipe to a fluid directly adjacent to the wall. In most piping system models,

the addition is instantly applied to the bulk average fluid temperature at that axial

point in the system.

3.1.1.1 Transport Delay

The physical delay of transporting a fluid through a system is in general a function of

average flow conditions, since it is essentially a pure time lag. However, in a physical

system the bulk flow condition is only a blurred representation of the detailed flow

variation, including radial velocity or temperature variation in a circular pipe. These

variations can be captured by residence time theory (Nauman and Buffham, 1983).

The mean residence time of all fluid entering a system is:

t̄res =
V

Q
(3.4)

However, much more detail can be found than this average, bulk condition. For

laminar, steady, one-dimensional flow of a Newtonian fluid in a circular tube, the
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velocity profile is known (by application and solution of equations (3.1) and (3.2)):

~v (r) = 2~̄v

(
1− r2

R2

)
(3.5)

This can be used to find the cumulative distribution function (CDF) of residence

time as a function of radius. The CDF expression for a monotonic velocity profile is:

F (r) =
1

Q

∫ R

0

2πr ·~v (r) dr (3.6)

Integrating this velocity profile yields the residence time as a function of radius:

tres (r) =
2r2R2 − r4

R4
(3.7)

The residence time distribution for this velocity profile with a radius of 0.1 is

shown in Figure 3.1a.

(a) Function of radius (b) Function of time

Figure 3.1: Cumulative residence time distribution under simple flow conditions

Consider that Figure 3.1a shows a normalized measure of how much of the total

flow has passed through the system at a given point in time based on the position

of a radial sweep over the pipe cross section. The result becomes more useful when

transformed to the time domain. This is achieved by eliminating the radius term
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from equation (3.7) and the following relation which is reformulated from equation

(3.4) for a flow that is highly one-dimensional (L� r):

t̄res =
L

v̄
(3.8)

The resulting time based cumulative distribution function is:

F (t) = 1− t̄2

4t2
(3.9)

Note that equation (3.9) is only valid for times when the flow has actually been

transported through the entire system, or when the cumulative distribution function

is positive (for this case t > t̄/2). This value represents the first appearance time

of the fluid. The resulting distribution is shown in Figure 3.1b for a system of a

particular length.

With a no-slip condition at the wall using the prescribed velocity profile, as the

value of radius approaches the wall, the residence time becomes unbounded. This is

shown with the asymptotic behavior of equation (3.9) (∼ t−2). Thus, as expected,

the molecules directly adjacent to the surface have an infinite residence time.

The preceding analysis is used to demonstrate the manner in which overall trans-

port delay in a fluid system is described using residence time theory. In general, this is

useful for determining the time a mass will spend reaching a point downstream. This

model is based on fundamental physics under given assumptions, without including

any mixing of the fluid within the system. The addition of mixing or diffusion within

a fluid of different concentrations (including energy concentration and therefore tem-

perature) introduces another layer of analysis.
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3.1.1.2 Mixing

As fluid is transported through a system, not only thermal gradients but also momen-

tum gradients in the system tend to diffuse over time. This dampening then appears

as a delay in transporting a perturbation through the system. Ekambara and Joshi

(2003) described the effects of mixing in turbulent (and transition) pipe flows. The

mixing occurs at different scales in the system: molecular, eddy, and convection. The

concentration of a material within a fluid stream is governed by a transient mass

balance equation:

∂c

∂t
+

1

r

∂

∂r
(rc~vr) +

∂

∂z
(c~vz) =

1

r

∂

∂r

(
rDm

∂c

∂r

)
+

∂

∂z

(
Dm

∂c

∂z

)
(3.10)

Where Dm is a mass diffusion coefficient, and c is concentration.

With a turbulent flow, the concentration or any other property is best represented

by the bulk average property value. Removing the turbulent variation terms using

Reynolds averaging procedure, the governing equation is offered as:

∂c̄

∂t
+
∂ (c̄v̄z)

∂z
=

1

r

∂

∂r

(
rDeff

∂c̄

∂r

)
+

∂

∂z

(
Deff

∂c̄

∂z

)
(3.11)

In this equation, Deff represents the molecular and eddy diffusion, while the con-

vective mixing is driven by the concentration gradients in the system. Note that these

equations are, as with (3.1), (3.2) and (3.3), likely not useful in detailed modeling for

whole building energy simulation, however it is important to describe this phenomena

to understand the driving gradients in the system.

Special flow characteristics are important in evaluating the mixing in a fluid flow.

The velocity profile in the boundary layer is of special importance. Assuming the

universal velocity profile
(
u∗ =

√
τ0/ρ

)
may introduce significant error, as the axial

dispersion coefficient is dependent on this velocity profile.

While it is understood that a fundamental model of boundary layer induced fluid
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mixing phenomena must contain a detailed representation of the boundary layer, em-

pirical methods may also be able to capture mixing effects without requiring the level

of detail necessary to solve boundary layer momentum equations. This is important

to consider as the ultimate goal of this work is within the context of whole building

simulation.

3.1.1.3 Fluid Heat Transfer

Thermal gradients in the flow tend to induce thermal diffusion in the same way that

velocity gradients induce mixing. In heat exchanger applications, where turbulent flow

is expected, the velocity and temperature profiles will be relatively flat compared to

laminar conditions. The thin turbulent boundary layer which drives mixing in the

system is not captured when using the mixing-cup approximation. The thermal

boundary layer is governed by the conservation of energy equation, which is coupled

to the conservation of momentum equation. The same discussion applies to thermal

diffusion as mechanical diffusion. In order to capture the physicality, the boundary

layer must be represented in some fashion, either fundamentally or empirically.

3.1.1.4 Boundary Heat Transfer

The addition of energy to the fluid flow occurs at the boundary layer, and the energy

is then transferred to the bulk of the fluid as it flows downstream. The overall heat

transfer to the fluid is generally modeled with Newton’s law of cooling:

q̇
′′

= h (Tsurf − T∞) (3.12)

Where the convection coefficient h is a function of the flow regime, fluid properties,
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and system configuration:

h =
Nuh

k
(3.13)

Nu = f (Re, Pr) (3.14)

As the fluid flows downstream through other components, the actual temperature

in contact with (for example) the heat exchanger surface may be significantly different

than the average temperature of the fluid over the cross section. The specific fluid flow

and system conditions dictate the importance of this deviation. With a mixing-cup

temperature representation, the heat addition must be added directly to the entire

radial cross section, without a diffusion effect. This is not a claim that the mixing-

cup approximation is invalid, only to say that this approximation does blur the actual

physical processes in the system.

3.1.2 Applicability to Building Simulation

A rigorous treatment of transport is expected to be of low value within a whole

building energy simulation program, especially if it comes with a significant increase

in computational burden or required input parameters. The mixing-cup state point

assumption in place in fluid loop simulation renders a detailed physical transport

model difficult or useless as ultimately the detailed transport phenomena would be-

come clouded by an overall axial state condition. For this work, the transport model

must then balance capturing detailed phenomena while still being useful under an

axial state, or mixing-cup representation. The transport effect is expected to become

more significant for systems with longer pipe runs, though the effect is dependent

on not only the piping length, but also the pipe diameter and flow rate. Boundary

heat transfer and physical transport effects can increase with increased length, and

intra-fluid mixing and heat transfer can increase with the increased diameter.
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3.2 Modeling Review

The effects of transport phenomena are not isolated to thermal fluid systems. While

research into transport delay of piping network provides the most directly applicable

information for the current work, transport delay is also encountered and researched

in industrial applications. Section 3.2.1 includes a review of transport delay in a

generalized fashion, with subsequent sections narrowing toward piping system appli-

cations.

3.2.1 Generalized Transport Phenomena

Transport delay is of concern in manufacturing operations, with many operations in-

volving heat transfer. For temperature sensitive processes, operation controls require

an understanding of the effects of transport time to ensure that the desired temper-

ature condition is achieved at given points in the system. Huang and Kung (2005)

utilized transport delay in a detailed controls analysis of an electro-hydraulic servo

system. Miles (1975) described a simple method for implementing transport delay in

process monitoring. Mosca and Zappa (1984) developed a plant controller for use in

situations where the transport delay in the system is not easily defined by step change

responses. Hearns and Grimble (2010) created a model of a material which lost heat

during production as it was transported over a distance. The production of the mate-

rial relied on a specific temperature at the end of this transport. Over this distance,

the model lost heat at a variable rate, so the speed of the material transport was

actuated according to the difference between modeled and measured material tem-

perature. The model was highly controls-based, and was developed solely for the

Laplace domain. The model operation was compared to theoretical derivations and

experimental data and provided a stable and optimized controller operation.
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3.2.2 Fluid Systems

While generalized transport systems provide insight into alternative means of mod-

eling the phenomena, research into the transport effect of fluids in piping systems is

more directly applicable to this research work. The following discussion focuses on

this fluid system related research.

Tobias (1973) used a simple analysis of a segment of pipe (or tube in a heat

exchanger) and developed the governing equations for bulk fluid temperature at any

point downstream of the inlet. The Laplace transform representation of this, which

included the time delay, was difficult to invert to the time domain under general

circumstances. However, an approximation of the governing equation provided a time

domain result. The approximation was compared to the original exponential form,

with error that may be significant, depending on the flow system characteristics.

Clark et al. (1985) provided a simple transport delay model for use in a dynamic

modular simulation program. The model was based upon a discretization of a pipe

into a number of segments, and used the bulk fluid velocity to determine an amount

to shift the fluid in the pipe. A fifth order polynomial was used to represent the fluid

temperature in the pipe, and linear interpolation was employed to find the tempera-

ture between any of the discrete points being solved. The model was able to predict

the transport effects in a pipe when compared to experimental data. This approach

clearly blurs the physicality of the transport delay, however it still captures a trans-

port effect. The fixed fifth order transport effect is suitable for many applications,

but as applications get more diverse, such as in very long piping systems, the assumed

shape is likely too restrictive to be a useful approach.

Hanby et al. (2002) utilized residence time distribution, assumed a turbulent ve-

locity profile with diffusion, and calculated a cumulative distribution function for the

flow. This benchmark was used in comparing a new approach where the pipe was

discretized into a number of well-mixed segments, using finite difference techniques.
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The new approach was able to accurately predict outlet conditions of a prototype

plant when testing using an inter-model comparison and experimental data. Hanby

claimed that for a turbulent velocity profile with diffusion, the number of cells to use

in discretization was optimally 46. This generalized, validated model is a suitable

candidate for whole building energy simulation applications.

Brazkeikis (2010) used a fundamental approach to create a simulation model of

a transient heat carrier in a conduit. The situation simulated was a valve suddenly

opening with hot fluid being introduced into the system. The author contrasted the

approach with the approach by Hanby et al. (2002), stating that the delayed exponent

effect is not often seen in the boiler system under investigation. This work was only

simulation-based, and used the electric circuit simulation software OrCAD.

Modeling transport in fluid systems need not be related to piping networks. Fu-

jieda and Ohyama (1985) modeled the fluid delay in supplying a carbureted engine

with fuel. Different conditions were considered related to how the fuel was delivered,

and where the delay actually occurred. Experimental measurements were used to

validate the model with a high degree of accuracy, however the model is too detailed

to be suitable in the general shell of whole building energy simulations.

3.2.3 Mixing in Fluid Systems

A significant underlying phenomena involved in transport delay in fluid systems is

the turbulent mixing present in the flow.

Webb and Van Bloemen Waanders (2007) and Liu et al. (2011) utilized a com-

mercial computation fluid dynamics program to study mixing in a number of piping

configurations. Speetjens et al. (2006) performed a detailed computational fluid dy-

namics development to study the effects of mixing in non-Newtonian fluids.

Levenspiel (1958) provided longitudinal mixing results for turbulent and stream-

line (laminar) flow. The assumptions in each regime differed, as molecular diffusion
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becomes secondary in turbulent flow, with the turbulent mixing dominating the mix-

ing phenomena.

Ekambara and Joshi (2003) studied axial diffusion coefficients in turbulent flow

for the purpose of studying concentration levels downstream in a system. A number

of historical data sets and regressions were used and compared, and the model was

highly accurate in a number of conditions.

Arakawa et al. (2008) utilized a one dimensional advection formulation of the

momentum equation to study mixing of gases in pipes. Of most importance was de-

velopment of the axial diffusion coefficient. Numerous formulations of axial diffusion

coefficient were compared and discussed.

3.2.4 Special Discussion of Hanby (2002) Model

The Hanby et al. (2002) model is a well-mixed discretization model, utilizing a heat

transfer boundary condition. The conduit is discretized into a sequence of well-mixed

nodes, and the first-order energy balance is governed by the following equation:

Transient Heat Storage︷ ︸︸ ︷
mfCp,f

∂Tf
∂t

=

FluidHeatGain︷ ︸︸ ︷
ṁCp,f (Tf,i−1 − Tf,i)−

ConvectiveHeatLoss︷ ︸︸ ︷
hAi (Tf,i − Tw,i) (3.15)

This equation is a standard well-mixed governing ordinary differential equation.

The equation can be discretized and solved using any number of methods.

In the source (Hanby et al., 2002), the optimal number of nodes is set to be 46

to best approximate an analytical transport response of a system with a turbulent

velocity profile with axial diffusion. The well-mixed approximation blurs the transient

phenomena of the system, especially axially along many discretized cells, each of which

are well-mixed. Within this approximation, there is a possibility of leading toward

a steady state assumption. In this case, the disconnect between solution domains

(steady governing equation, transient transport response) may become quasi-steady
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state, and introduce a coupling that is heavily dependent on the time step of the

system. The assertion that the optimal number of nodes is 46 may be due to a

specific configuration of the system. However, the model was utilized in the source

in an experimental validation procedure, and shown to be quite accurate. Thus,

the approach is not discounted, but the selection of the number of cells likely varies

between systems.

As the Hanby model is not significantly different from a standard well-mixed

model, the remainder of this work will focus on two bounding cases: plug flow and

well-mixed.

3.2.5 Summary

The ultimate goal of this work is to create a transport delay model for possible

implementation in a whole building energy simulation program. To ensure maximum

applicability, the model will include a simplified representation of the fluid at any

axial point in the system such as the mixing-cup approximation. However, as the

background and literature review revealed, the radial variation of properties provides

the mechanisms for much of the transport phenomena, so this is considered carefully.

3.3 Experimental Measurements

A data set was created which captures the transport phenomena at a highly refined

time scale, in order to facilitate interpreting the bulk transport effects into the dif-

ferent physical mechanisms, that were described in section 3.1.1. The experimental

site includes a series of horizontally drilled boreholes. These were drilled in 2010, and

thermal response tests were performed. In the summer of 2012, data sets were created

from a series of new thermal response tests on multiple boreholes. The experiment

was performed under the supervision and support of Dr. Richard Beier and Bill Hol-

loway. Although the data from 2010 did not include a high level of time resolution,
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comparisons are made between the new experimental data against the data from two

years prior.

3.3.1 Experimental Setup

The experimental site is located in Stillwater, OK, on the campus of Oklahoma State

University. As mentioned previously, the test site was setup in 2010 with a total

of ten horizontal boreholes drilled in parallel. The field containing the boreholes is

shown in Figure 3.2. Figure 3.2a shows the location of the field with an arrow in

relation to the Stillwater Airport, which is boxed on the image. Figure 3.2b shows a

closer view of the site, with boreholes drawn roughly on the image. Three boreholes

are displayed on the diagram to show the orientation, however there are actually ten

installed in the ground. As labeled in the figure, the connections for the borehole are

exposed on the north side of the field. This is where the test rig is hooked up to each

borehole during testing .

The ten boreholes at this experimental site are drilled horizontally through clay

soil. The boreholes are nominally 200 feet long, with 3/4 inch HDPE SDR-11 pipe,

so the total pipe run for a single borehole is 400 feet. Seven boreholes are 4.5 inches

in diameter while the other three are 5.5 inches. Six boreholes were injected with

Bentonite grout and cuttings during installation, while the other four were not back-

filled (essentially containing just drilling mud). The boreholes were originally tested

for thermal conductivity in 2010 directly after the installation. After sitting for two

years, they are being retested to support this transport delay investigation and to

determine if the thermal properties have changed. The boreholes with grout were

expected to perform similar to the initial test, while the un-grouted boreholes were

more likely to have significantly different thermal properties as seepage and movement

will have occurred.

As the horizontal drilling was being performed, the depth below the surface was
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(a) Broad view of test site

(b) Closer view of site with simplified borehole layout shown

Figure 3.2: Map view of test site location and configuration, provided by Google
Maps positioned to longitude, latitude (−97.082◦W, 36.133◦N). Imagery Copyright
2013 GeoEye, Texas Orthoimagery Program, Map data Copyright 2013 Google.
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measured at multiple points along the borehole length. This is shown in Figure 3.3

for two example boreholes. The burial depth varies within approximately 1.5 feet

along the length of the borehole for any individual borehole. Average depth between

individual boreholes varies by several feet. During installation, a layer of material was

found at a certain depth which was difficult to penetrate with the drilling machine.

The shallower boreholes were a result of avoiding this layer.

Figure 3.3: Variation of drilling depth along the borehole axis for two boreholes

For borehole modeling purposes, the average depth may be utilized, though this

could add to the uncertainty of the model. If additional accuracy is desired, a method

of accounting for the depth variation may be implemented. For this short time scale

transport delay study, the depth of the borehole is insignificant.

3.3.1.1 Test Rig and Instrumentation

The test rig is an insulated box containing a pump, heater, and data acquisition

equipment. Figure 3.4 shows one of the test rigs from two views (because there

are hidden objects in each individual view) with a number of labels describing the

individual components:

A: Circulation pump
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B: 240 V immersed heater, originally 3500 W, reduced to 1500 W for new testing

C: Temperature measurement #1

D: Temperature measurement #2

E: Connection for purge operation

F: Connection to ground heat exchanger

G: Data acquisition box

(a) View from one side of the box (b) View from the opposite side

Figure 3.4: Layout and piping system for testing rig

Currently the measurements being taken include temperature at the heat ex-

changer inlet and outlet, heater power, and flow rate. A simplified view of the exper-

imental loop is shown in Figure 3.5, with the heater and borehole elements added to

visualize the location of measurements.

Undisturbed ground temperature is estimated by initiating the fluid flow without

any heat addition until it reaches a steady condition. The instrumentation is capable

of sampling at one-second intervals, though previous testing data was taken at a one

minute interval. The program was modified to take more one-second data during the

new tests to better capture the transport phenomena.
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Figure 3.5: Simplified view of the experimental test rig loop data acquisition

3.3.1.2 Testing Operation

The test procedure was a standard thermal response test. In this test, the system

flows continuously until a steady condition is achieved (which approaches the ground

temperature at the borehole wall). The heater then turns on to a nominally constant

heat rate, and the fluid and ground temperatures begin to rise. Due to transport

effects, there is an initial increase in temperature of the fluid at the heat exchanger

inlet, then the heat exchanger outlet. A large step increase in temperature is then

encountered at the heater inlet, causing an even higher temperature gain. These steps

in temperature are monitored, and once these have reached steady conditions (due

to mixing, diffusion, boundary heat transfer), the transport test is complete, though

the long-term thermal response test continues.

3.3.2 Uncertainty

The data set consists of a number of experimental measurements as well as assumed

or approximated parameters. These are used in the simulation model to predict a

system response. Experimentally measured parameters include:
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• Temperatures: Inlet and Outlet (thermistor)

• Heater: Input Voltage, Input Amperage

• Flow: Volume Flow Rate

The uncertainty in these measurements can be estimated from equipment specifi-

cations or calibration data. Fluid properties (k, ρ, Cp, ν, Pr) are looked up based on

average fluid conditions. The effect of using an average fluid temperature for property

evaluation can cause uncertainty which can be quantified by calculating the sensitiv-

ity over a range of temperatures. The temperature variation in this experiment is not

expected to require variable thermal properties.

Three physical parameters must be approximated as they cannot be known ex-

actly:

• Pipe inner and outer diameters (may have been affected during installation or

over the last two years

• Length of the system, which must include an uncertain amount of additional

length to account for the test rig loop and connections

• Burial depth (measured during installation using a beacon at discrete points

along the length)

The effects of running tests in neighboring boreholes will be minimized by alternat-

ing the tests and allowing a relatively long time to pass between testing neighboring

boreholes. If the energy from a borehole being tested propagates to the adjacent

borehole, the neighboring borehole will not be running, and the temperature of this

neighbor will likely be near the undisturbed ground temperature.

Assuming an undisturbed ground temperature as a boundary for the borehole is

an approximation. The spatial ground temperature distribution is not measured, so

the representative ground temperature is estimated from an initial circulation of fluid

in the loop. During a heated test, heat transfer will be encountered between the fluid
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and the ground, thus affecting the near-borehole ground temperature. An assumption

can be employed that at a certain distance the undisturbed ground temperature

remains. The uncertainty introduced in using this approximation can be quantified

by performing bounding calculations using different undisturbed radii and also heat

transfer calculations assuming ground transport properties.

The flow during the tests should be turbulent in nature, providing nearly uniform

radial velocity and temperature profiles such that the effects of thermistor placement

in the flow will be minimal. The boundary layer thickness and profile can be predicted

assuming flow conditions (fully developed, for example), however since the thermistors

are placed inside the test rig container, the flow is heavily influenced by the fittings

near the thermistor, mixing further such that at this point in the system a mixing-cup

temperature is a suitable approximation. Elsewhere in the system, during the long

runs of heat exchanger tubing, the flow will be more developed, and the final results of

a temperature measurement will still capture the overall transport delay phenomena.

Each of the individual measurements (fluid temperatures, mass flow rate), and

also the fluid property values, have some uncertainty. These individual uncertainty

values can be combined into a final uncertainty in derived performance values. The

heat transfer rate in the ground heat exchanger system can be calculated in three

forms:

Fluid Heat Transfer q̇ = ṁCp (Tf,out − Tf,in)

Heat Exchanger Surface Heat Transfer Q = hA (Tpipe,avg − Tf,avg)

Heater Heat Transfer Q = IV

Each of these forms rely on some assumptions. The fluid heat transfer relies on

a mixing-cup assumption of a fluid temperature at the measurement point in the

system. The area-based heat transfer rate relies on estimating an average pipe wall

and fluid temperature, as well as the convection coefficient and estimated surface area.

The heater heat transfer relies on an instantaneous transition from electrical energy
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input to heat gain to the fluid, as well as accurate measurements of the electrical

values.

The uncertainty related to experimental measurements can be quantified using

standard techniques such as those described by Holman and Gajda (1984). The gen-

eral form of uncertainty in cases where the independent parameters undergo random,

independent uncertainty w is shown here for a resultant value R and independent

variables xi:

wR =

√√√√∑
i

(
∂R

∂xi
wi

)2

(3.16)

As a demonstration of the uncertainty expected in the experimental measure-

ments, consider the calculation of heat transfer in the system using the fluid heat

transfer expression above. The fluid specific heat is not considered in this uncertainty

as the working fluid is plain water, and the temperature variation in the system is

minimal compared to the documented and tabulated property data, so that the un-

certainty is insignificant. The remaining two parameters are ṁ and ∆T . In this case,

the temperature difference is a single uncertainty rather than including the individual

temperatures separately. With these two independent variables, the uncertainty in

heat transfer rate can be calculated as:

wq̇ =

√(
∂q̇

∂ṁ
wṁ

)2

+

(
∂q̇

∂∆T
w∆T

)2

(3.17)

The uncertainty in mass flow rate is estimated based on an uncertainty in the

data acquisition program used in the experiment. The tool reports decimal values of

gallons per minute. As such, the uncertainty is estimated at 0.1 GPM. Other data

could be included such as calibration curves for the equipment, however this value is

expected to be a sufficient estimate. This value, when converted using an appropriate

value of density, results in a mass flow rate uncertainty of 0.0063 kg/s.
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The uncertainty in thermistor measurement is based on experience and discussion

with researchers, and is estimated at 0.1 ◦C per thermistor. Since the independent

variable in this calculation is not a single temperature measurement, but rather a

temperature difference, the maximum uncertainty is achieved when both measure-

ments are at maximum uncertainty in different directions. This results in a total

temperature difference uncertainty of 0.2 ◦C.

The remaining unknowns in equation (3.17) are the partial derivative terms. For

such a simple calculation these are trivial and shown here:

∂q̇

∂ṁ
= Cp∆T (3.18)

∂q̇

∂∆T
= Cpṁ (3.19)

For a typical measurement, the heat transfer is calculated nominally at a value of

3643 W. The total uncertainty for this same measurement point is calculated as:

wq̇ = 255.4 W (3.20)

This is approximately 7% uncertainty at this measurement point. As simulations

are performed in the remainder of this work, this value will be considered when

performing comparisons.

3.3.3 Measurements from 2010

The boreholes were tested in 2010 to determine the borehole resistance of the different

installation configurations. While this data may not be directly relevant to the current

topic, it is presented here briefly to provide a baseline and further background on

the experimental site and measurements. Figure 3.6 shows experimental data for

borehole #1 over different phases of a thermal response test. Note the temperature
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is measured at the heat exchanger inlet (entering fluid temperature) and the heat

exchanger outlet (leaving fluid temperature). The heater amperage is also plotted as

a signal for heater operation. Figure 3.6a shows a majority of the data set. There is an

initial temperature ramp-up once the heater is turned on, followed by a progression to

a nearly flat profile, with many small bumps along the way. These are the transport

phenomena in the system as the warmed fluid cycles. Beyond the time scale shown

in this plot, the temperature will continue increasing until a quasi-steady condition

is reached where the heater heat addition approaches the heat transfer from the heat

exchanger to the ground.

Figure 3.6b shows the detailed response during initial heater turn-on phase. As

soon as the heater is turned on, the HX entering temperature ramps up to a nearly

constant value over several minutes. With a nearly constant heater entering fluid

temperature and heat rate, the outlet temperature of the heater will be constant also.

After approximately three minutes, the heat exchanger outlet temperature ramps up

as the warm fluid arrives after a full circulation through the heat exchanger. The

heat gain into this already warmer fluid increases the temperature further. This

stair-stepping is then seen through the rest of the data, as shown in Figure 3.6c.

In these original thermal response tests, data was sampled at a one second interval

until the heater was initiated, at which point the interval increased to one minute

for the remainder of the test. Thus, even though this temperature measurement

shows temperature rises at specific points in time, the sampling time scale blurs the

actual point in time/space where the temperature increase actually existed. For a

system with a roughly three minute cycling time constant, a much higher resolution

is required to determine the fluid behavior. This is the justification for creating a

new data set with a higher sampling rate.
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(a) Large scale view of thermal response test data

(b) System temperature response during heater
turn-on phase

(c) System temperature response with effects of sys-
tem recirculation and transport delay

Figure 3.6: Example data from borehole #1 thermal response test from 2010
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3.3.4 New Measurements

In 2012, the boreholes were retested after sitting dormant since the 2010 thermal

response testing. Section 3.3.4.1 covers background information of the time that

passed in between tests, and section 3.3.4.2 presents data measured in the new tests.

3.3.4.1 Climatic Activity

The original measurements in 2010 were used to determine the borehole resistance of

each borehole installation configuration. The boreholes then sat unused for two years

until the current experiments began. These two years were two of the hottest years

on record for Stillwater, OK, breaking many temperature records including number of

days above 100 degrees Fahrenheit and an all-time temperature record, with extreme

drought conditions. The daily average temperatures for May through September in

2011, 2012, and also in a TMY3 weather file are shown in Figure 3.7. At first it may

appear the temperatures overlay each other, however a closer analysis shows that for

a majority of the season, the temperature is 3− 5 ◦C higher than the TMY3 (Wilcox

and Marion, 2008) data, and peak increases of nearly 10 ◦C.

Figure 3.7: Daily averaged temperatures for Stillwater, OK in 2011, 2012, and a
TMY3 weather file
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During this new set of experiments, the same heater element was initially employed

that was utilized in the previous tests. However, with similar flow rate conditions

and heat rate, the temperatures in the boreholes quickly increased to out-of-range

conditions. The conditions on the heat exchanger had changed such that it could no

longer reject the same amount of heat transfer. It is possible that the dry weather

and extreme heat may have affected the ground much deeper than anticipated, to the

point where the soil and grout around the pipes have a much lower conductivity than

originally measured in 2010. This lower conductivity effect could be the result of an

air gap between the pipe and ground. In order to accommodate this behavior and

still generate a usable data set, the heating element in the experimental test rig was

replaced, reducing from 3500 W of heat addition to 1500 W. This change allowed the

experiment to run for a full test time frame and provide useful data for the initial

transport effects and also the long term thermal response test.

3.3.4.2 General Results

The major improvement with the new data set is the increased temporal resolution,

which allows a more accurate representation of the transport phenomena, especially

early in the experiment when temperature gradients are highest in the fluid. The

experimental results from three different boreholes are provided in Figure 3.8. Note

that these results portray the gradual transport cycling effects much better than the

nearly instant stair-stepping in the 2010 data (Figure 3.6).

All three loops in Figure 3.8 show a similar cycling effect during the early cycles

of the system, with the magnitude being governed by the thermal properties of the

system. After the initial cycles, the results tend to differ. Figure 3.8a shows the

response of loop 2. The temperature profile tends to flatten quickly after the initial

cycles are completed. Figure 3.8b shows the response of loop 7. The temperature

response of this borehole is significantly different from loop 2. This is somewhat
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(a) Loop 2

(b) Loop 7

(c) Loop 8

Figure 3.8: Loops start up period demonstrating one-second data capturing
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expected based on the original experimental design of 2010, as borehole 7 did not

have any grout installed during the borehole installation. The borehole resistance

was much higher in this borehole than in loop 2 in the new experiments. Figure 3.8c

shows the diffusion of a heat impulse added to the system prior to actual test startup.

In the early time values, the heater was started briefly, and a section of warm fluid

cycled through the system. This heat then diffused through the fluid as well as to

the pipe wall boundary.

Because the data is loop 2 is the most “well-behaved”, it is used as the main data

source for performing experimental validation and other calculations moving forward

in this work.

3.3.5 Comparison with Old Measurements

To conclude the discussion of experimental measurement, a brief description compar-

ing the borehole thermal response of 2010 data to current data is possible. Consider

the drastically different response in loop #7, as described in the previous section. The

temperature response is much steeper than encountered in the previous testing. The

borehole resistance was calculated in 2010 using a line source technique as described

by Carslaw and Jaeger (1947):

Rbh#7,2010 = 0.35 hr-ft-F/Btu (0.2 mK/W) (3.21)

However, after two years passed, the resulting temperature response yields a bore-

hole resistance of:

Rbh#7,2012 = 0.81 hr-ft-F/Btu (0.47 mK/W) (3.22)

The borehole resistance alone increased to over 200% of the original value. This

drastic increase in borehole resistance is likely due to two contributing factors:
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• The lack of grout in the original installation

• The extreme weather conditions for the two years between tests

Without grout, the ground is in direct contact with the drilling mud, which will

eventually shift, leaving the ground in contact with the heat exchanger tubes. The

grout is intended to stay in the borehole region, and provide a more consistent bore-

hole resistance between the pipes and the ground.

Further investigation is not warranted in the current experiment, as the transport

phenomena is isolated to the very early stages of the experiment, when the heat

transfer to the ground is less than in the later stages of the test. However, the results

are highly interesting in terms of research in general. It is possible that the burial

depth of these boreholes is too shallow to operate under the encountered weather

conditions. This indicates the need to further research suitable burial depths that are

satisfactory to operate under a variety of conditions.

3.4 Simulation Testbed

The major contributions of this work to transport delay research as a whole include:

1. Creation of an experimental data set suitable for evaluating transport delay in

a piping system

2. Evaluation of transport delay simulation models and propose modifications or

new modeling solutions as necessary

3. Investigation of the effects of transport delay in whole building energy simula-

tion

To begin the simulation work, a simulation testbed was developed (source code is

available as appendices in this document). The testbed is a pipe simulation program

which allows a variety of transport phenomena and heat transfer calculations to be

utilized individually, and provides output including temperatures of the fluid along
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the length of the pipe. This testbed provides a model development platform where

a model can be tested in an isolated environment before attempting implementation

within a larger simulation program. The simulation loop used in this testbed is

represented in Figure 3.9.

Figure 3.9: Simplified loop representation for the simulation testbed

The model uses a numerical segment by segment discretization for the pipe, and

allows a heat pump model to be simulated between the pipe outlet and the pipe inlet

to provide a system simulation model.

3.4.1 Program Overview

Within the testbed, the pipe is discretized into a number of segments. This number

of segments is an input parameter. The model uses a uniform segment length:

Lseg =
Lp
Nseg

(3.23)

For pure mechanical transport, the residence time for the entire pipe can easily

be calculated from a known bulk velocity:

tres,p =
Lp
~v

(3.24)
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These conditions are used to select a time step that conveniently matches the pipe

spatial discretization with each segment’s residence time:

∆t =
tres,p
Nseg

(3.25)

If heat transfer calculations are performed, the heat transfer is defined from the

fluid to the outer pipe wall surface. In a real system, the heat transfer phenomena

extends well beyond the pipe outer radius, however the effect of this is dependent

on the timescale of the experiment and the transient transport properties of the pipe

and soil. As the testbed is utilized for short time-scale transport delay, the pipe outer

boundary provides suitable accuracy. The conductance from the fluid to the outside

of the tube is modeled as the following series of equations, assuming turbulent flow

with minimal property variation:

ReD =
2R~v

ν
(3.26)

NuD = 0.023Re0.8
D Prn (3.27)

h =
NuDk

2R
(3.28)

R′ =
1

h
+

ln Ro
Ri

2πkpLseg
(3.29)

UA =
Asurf,seg
R′

(3.30)

The model steps in time at a uniform rate through a given ending time. There are

three different settings that can be adjusted to simulate different phenomena, each of

which are described in the next sections:

1. Transport Model

2. Circulation

3. Heat Transfer
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The four main transport manifestations (section 3.1.1) are captured through the

use of the transport model and heat transfer models described here.

3.4.1.1 Transport Model

The transport model defines the model used in calculating the flow response in the

fluid. This defines the way in which neighboring segments interact mechanically, and

simulates the fluid flow patterns in the pipe over time. The options for this setting

are:

• Plug Flow

• Well Mixed Segments

For plug flow, the fluid moves from one segment to the next without any mixing

interaction in the fluid in adjacent cells. In the simulation model, this is accomplished

with a straightforward shift of temperature values in the simulation data structures.

In many cases, this is an inaccurate representation, however it provides a lower bound

on the possible axial mixing condition in the system.

For well mixed segments, the mass entering a segment is well-mixed with the

fluid already in that segment before an overall temperature is calculated and sent

to downstream segments. This steady, well-mixed, assumption will, in most cases

significantly overestimate the actual phenomena. However, this provides an upper

bound on the possible axial mixing condition in the system. This is equivalent to the

approach by Hanby et al. (2002).

3.4.1.2 Circulation Type

The circulation type defines the relationship of the fluid between the pipe outlet state

and the pipe inlet boundary condition. There are three options:

• Heat Pump
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• Simple Recirculation

• Boundary EFT

For a heat pump model, the pipe outlet temperature at the end of a time step

passes through a “heat pump”, in which case a prescribed heat transfer is applied to

the fluid to calculate the pipe entering fluid temperature for the next time step using

the expected equation:

Tp,in = Tp,out +
q̇

ṁcp
(3.31)

Although this option is named “heat pump”, an actual heat pump simulation is

not performed; the heat is directly added to the fluid, without a COP or efficiency

calculation. If building loads are utilized, this should be considered in pre-processing

the loads.

For “simple recirculation”, the outlet temperature at one time step is directly the

pipe inlet temperature for the next time step. This is equivalent to a heat pump

recirculation with zero heat transfer.

The boundary entering fluid temperature (EFT) approach is used for tightly con-

trolling entering conditions where a scheduled or fixed temperature is applied to the

pipe inlet at each time step.

3.4.1.3 Heat Transfer Calculation

The “heat transfer” option defines how heat transfer from the fluid to the boundary

is modeled within the pipe. There are two options:

• Adiabatic

• Pipe Outer Boundary

In adiabatic conditions, the fluid never undergoes any heat transfer interaction

with the surroundings as it passes through the pipe. If this is utilized with plug flow
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conditions, the fluid will not change temperature as it moves through the pipe, rather

it will be cycled continuously.

In pipe outer boundary mode, the fluid will interact with a specified pipe outer

wall temperature. This temperature is a single value fixed in time and specified

directly at the pipe wall outer radius.

3.4.2 Detailed Equation Formulation

The interactions between transport model, heat transfer, and circulation type set-

tings results in a specific set of equations for each combination. Similarities between

the equations have led to a simple structure implemented inside the testbed code,

however the equations are described here for each combination of settings currently

implemented:

Plug Flow - Adiabatic For plug flow, the fluid from an upstream segment moves

into the downstream segment as a full shift of all segments, without any interaction

between neighboring segments. For adiabatic piping, there is essentially nothing to

model aside from tracking the fluid through the pipe. This can still be derived by an

energy balance over the cell:

mCp
∂T

∂t
= 0 (3.32)

Which reduces to indicate that the temperature variation of a single (moving)

segment worth of fluid is not changing temperature with time. Since the shift is the

only operation taking place, this is satisfied with the following segment temperature

update equation:

Te = Ti (3.33)

Plug Flow - With Heat Transfer With the plug flow model still in place, the

flow between segments still does not mix. However, with the addition of heat transfer
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to the pipe wall, some temperature variation is captured. The governing equation

begins with a heat balance

mCp
∂T

∂t
= q̇pipe (3.34)

The pipe heat transfer is currently defined as the heat from the pipe outer wall

surface temperature to a representative fluid temperature in the domain. In order to

carefully consider the phenomena being simulated, the transport and heat transfer

calculations are performed as two independent steps. The spatial shift in fluid seg-

ments puts the upstream cell temperature into the current segment. Transient heat

transfer occurs on this segment without including any flow effects. Thus the heat

transfer is between the upstream cell temperature and the pipe outer wall temper-

ature. This will effectively shift the temperature then perform heat transfer. The

expression for heat gain is:

q̇pipe = UA (Tp − Ti) (3.35)

The partial derivative in equation (3.34) is discretized in time and is in reference

to the mass of fluid entering the cell. Thus, using the nomenclature where a “+”

represents a property at the end of the time step, the partial derivative is represented

as a finite difference1:

∂T

∂t
|= T+

i − Ti
∆t

(3.36)

Evaluating the heat transfer entering the fluid (eq. (3.35)) at the beginning of the

time step enforces an explicit approach to the fluid update calculation. While this is

not an inherently stable approach, the time step used in this model is expected to be

small, and could be checked to ensure stability during simulations. The final form of

the update equation is shown here:

T+
e = Ti +

UA

mCp
(Tp − Ti) (3.37)

1The |= operator signifies that one operand models the other operand.
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Well Mixed - Adiabatic For a well-mixed system, an instantaneous complete

mixing occurs in the system at each cell. This is an exaggeration of the mixing

effects in most piping systems, but provides the opposite boundary to the plug flow

approximation. The first step in this calculation is to perform a full mixing simulation.

This is governed by the equation:

∑
q̇ = 0 (3.38)

Each of the fluids will transfer some heat during the mixing processes, and the

entire mass will end up at a resulting temperature. Thus, the heat transfer for each

fluid is governed by:

q̇ = mCp (Tfluid − Tmixed) (3.39)

Coupling this into the governing equation for both fluids (1 and 2) being mixed

results in the following update equation for a mixed temperature:

Tmixed =
m1T1 +m2T2

m1 +m2

(3.40)

Since the pipe is adiabatic, the mixed temperature is the outlet temperature:

Te = Tmixed (3.41)

Well Mixed - With Heat Transfer The well-mixed flow assumption, as applied

in this testbed, inherently adds a steady-state nature to the fluid in order to bring

about a fully-mixed condition in each segment as the fluid flows downstream. With

the addition of boundary heat transfer, the option is open for utilizing a transient or

steady state formulation. Currently, the heat transfer in this combination is modeled

as transient. This demonstrates the decoupled nature of the mixing and heat transfer

calculations for this testbed. Eventually, the heat transfer formulation could be an
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option for the testbed.

In this mode, the well-mixed temperature is calculated for adiabatic conditions

(Tmixed; eq. (3.40)), followed by the heat transfer calculation. The heat transfer

update equation is in the same form as that for the plug flow case (equation (3.37)),

but using the mixed temperature instead of the upstream shifted temperature:

Te = Tmixed +
UA

mCp
(Tp − Tmixed) (3.42)

3.5 Model Exercise

The simulation testbed was used for a simplified simulation of the experimental setup

described in section 3.3. This is not intended to represent a full experimental valida-

tion yet, only a demonstration of the model. The testbed parameters are specified as

in Table 3.1.

Table 3.1: Summary of input parameters to testbed simulation for borehole #1 test
data from 2010

Parameter Value Units Source

initial fluid temp 16.577 ◦C Approximated
entering fluid temp 16.577 ◦C Approximated

pipe outer surf temp 16.577 ◦C Approximated
fluid mass flow rate 0.29 kg/s Experimental Setup
pipe inner diameter 0.02154 m 3/4” HDPE SDR 11
pipe outer diameter 0.02667 m 3/4” HDPE SDR 11

total pipe length 121.92 m Experimental setup
pipe conductivity 0.45 W/mK Incropera and DeWitt (2002)
fluid conductivity 0.58 W/mK Incropera and DeWitt (2002)

fluid density 997.8 kg/m3 Incropera and DeWitt (2002)
fluid specific heat 4187.0 J/kgK Incropera and DeWitt (2002)

fluid kinematic visc 0.8e-6 m2/s Incropera and DeWitt (2002)
fluid prandtl 7.0 − Incropera and DeWitt (2002)
Q heatpump 3500.0 W Experimental Setup

The experimental data showed that the near-borehole ground temperature was

61.84◦F, as the system ran to a steady condition with no heat addition. This is used
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as the solution’s initial condition, initial entering condition, and boundary condition

(which for this simplified model is fixed at the pipe outer wall). The fluid flow rate

is reported in the experimental data in volumetric-basis, so the density is estimated

in order to calculate a mass flow rate to be used in the testbed. The heater power is

calculated as the measured voltage times amperage. A constant amount of heat is not

captured by the temperatures measurements in the system due to flow fluctuations

and fluid temperature variation, but as the system approaches steady state, the heat

gain approaches a constant value.

Based on this system setup, the average residence time for the entire pipe is

calculated as:

tres,pipe = 153 s (3.43)

= 2.55 min (3.44)

= 2 min 33 s (3.45)

This testbed demonstration uses a heat impulse mode with the heater switched on

for exactly half of the fluid average residence time. This produces a “half-heated/half-

unheated” fluid temperature profile in the loop.

The experimental data showed transport phenomena as seen in Figure 3.6. The

fluid behavior is not fully plug flow or fully mixed, rather somewhere in between. The

testbed is run here for two cases: complete plug flow with no mixing, and fully mixed

flow at each node. Both cases include heat transfer to the boundary (pipe wall). This

test demonstrates the ability of the testbed for perform a simple bounding calculation

on the system. The results of the simulation are plotted as fluid temperature profiles
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along the length of the system at discrete sampled points in time:

tsample ≡



t0 = 0 s

0.5tres,pipe = 76.5 s

0.75tres,pipe = 115 s

1.75tres,pipe = 268 s

5.75tres,pipe = 880 s

(3.46)

These sample times were chosen to visually express certain conditions of the sys-

tem. The initial time shows the steady condition at the ground temperature. At

halfway through a pipe residence time, the front half of the system has fluid which

passed through the heater, while the second half has not cycled through the heater.

At this point in the simulation, the heater now switches off. At three-quarters of a

residence time, the warm fluid is centered in the system, a beneficial stopping point

for data visualization. Integer increases from this point show the warm fluid region

centered in the system, but at later points in time.

At this point, the significant level of simplification in place in this testbed is not

expected to accurately match experimental data. The purpose of this exercise is to

demonstrate the possibility of a simple model in capturing transport phenomena, and

show qualitatively what may be possible from the experimental data.

The results of the simulation are shown in Figure 3.10. For plug flow conditions,

the results are shown in Figure 3.10a, while Figure 3.10b shows the results for the

well-mixed case.

The plug flow case in Figure 3.10a shows the expected discontinuity between

heating and unheated fluid. The unheated fluid remains at the initial temperature,

thus there is no heat transfer to the boundary (with this simple boundary heat transfer

model). The warmed fluid rejects heat to the (constant) boundary over time, and
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(a) Complete plug flow (b) Fully mixed flow at each node

Figure 3.10: Simulated fluid temperature profiles at discrete times

cools. Eventually this fluid would approach the boundary temperature.

The well-mixed case in Figure 3.10b shows an unrealistic amount of axial diffu-

sion within the fluid, such that even half-way through a residence time, the fluid

in the downstream half of the pipe is affected by the heat addition to the fluid in

the upstream half. This diffusion dampens the distinction between the heated and

unheated fluid sections. Within five cycles, the mixing effect dampens the thermal

gradient such that there is a warm mass of fluid everywhere in the pipe. This mass

rejects heat to the boundary, and will approach the boundary temperature eventually.

The well-mixed and plug flow cases specify the same heat addition from the heater,

since it is approximated as a constant heat rate, and both cases have the same heat

addition time. However, the average temperature between the cases is slightly differ-

ent as the simulation moves in time. This is because the plug-flow case has a mass

of much higher temperature resulting in a higher heat transfer rate to the surround-

ings. The well-mixed case quickly dissipates to a milder temperature, so there is less

potential for heat transfer to the surroundings. Energy is balanced in each approach,

but the total heat transferred to the boundary is different, resulting in a different

bulk fluid temperature in the system.
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3.6 Simulation Testbed Evaluation

The model testbed was developed and shown to be capable of performing bound-

ing calculations using a number of model configurations. In this section, the model

testbed is used as a basis for investigating modeling techniques. Specifically, the

model testbed’s ability to match experimental data will be evaluated.

3.6.1 Data Preparation

As previously discussed, the test results from loop #2 were selected for this investi-

gation. The results clearly depicted the transport phenomena, however the flow rate

measurement for this borehole failed during this experiment. The thermal response

test for this borehole was run much longer than the initial transient period, to a steady

state condition for a long period. This, along with the specific measurements being

made, allow for a degree of freedom for cases when a single unknown is present. The

borehole steady conditions, delta temperature, and known heat gain from the heating

element support a relatively accurate calculation of the mass flow rate. Figure 3.11

shows the steady state results from the loop test.

In the initial period, the borehole conditions vary dynamically. However, once

steady state is reached, the electric power into the fluid from the heating element is

very close to the heat rejection rate of the borehole to the surrounding ground2. The

following nominal steady values are used:

q̄ = 1390 W (3.47)

∆̄T = 2.097 ◦C (3.48)

Using approximate thermal properties for the water in the system (ρ = 998 kg/m3,

2Even at steady state, there is a small variation, but this effect is averaged out by using a large
sample set of the data during this steady period.
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Figure 3.11: Steady state operation of loop 2 in thermal response test in 2012.

Cp = 4180 J/kgK) and the nominal flow conditions allow the mass and volume flow

rates to be calculated3:

ṁ =
q̄

Cp∆̄T
= 0.1586 kg/s (3.49)

V̇ =
0.1586 kg

s

m3

998 kg

264.17 gal

m3

60 s

min
= 2.518 GPM (3.50)

Although the mass flow rate in the system may vary slightly in the initial data

from this steady value because of temperature variation leading to property variation

leading to a different operating point, the effect is expected to be much less than the

estimated overall uncertainty of 7% of total power input.

3The volume flow rate is not necessary for subsequent calculations but provides a reference value
that may be more familiar, or relatable, to readers.
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3.6.2 Comparison to Experimental Data

The simulation model testbed is exercised in both limiting flow modes: plug-flow

and well-mixed. It was expected during the initial experimental design that these

two modes would bracket the experimental data. The plug flow will under-estimate

the mixing in the system, while the well-mixed will almost certainly over-estimate

the mixing. While this will have an effect directly on the timing of the system

simulation, it will also have an effect on the predicted heat transfer rates. Clearly,

the heat transfer effect is highly configuration dependent, as cases with a high level

of insulation will be less affected. Investigating when this is important is beyond

the scope of the current task, but recommended as part of the future work of this

research.

The data described and prepared in the previous section is set up for comparison

with the testbed. In addition to allowing values to be hard-wired in the source code,

the testbed also reads from an input file, and can also read options from environment

variables set on the command line. The inputs for this particular experiment are

summarized in Table 3.2. Note that many parameters in the testbed were defaults,

the values shown in the table are those that override the model defaults.

The model coefficient variables (start with MODELCOEF in Table 3.2) are set to

zero or one for each of the desired flow modes. The results of each of these bracketing

solution are compared to the experimental response in Figure 3.12.

The simulation responses shown in Figure 3.12 are just as expected. The plug

flow case shows a very unrealistic response of distinct stair step cycles throughout

this entire transient period. The well-mixed case shows an overestimation of the

mixing in the system, and dampens the response.

The testbed was designed to allow blending of the response of each model. In this

way, when the testbed is updating a cell temperature, the resulting temperature is

calculated with each model type. The model coefficient variables are then employed
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Table 3.2: Summary of Input Parameters for Testbed Comparison to Experimental
Data

Testbed Variable Name Value Units

INITIAL FLUID TEMP 21.27 ◦C
ENTERING FLUID TEMP 21.27 ◦C
PIPE OUTER SURFACE TEMP 20 ◦C
FLUID MASS FLOW RATE 0.261 kg/s
PIPE INNER DIAMETER 2.154E-02 m
PIPE OUTER DIAMETER 2.667E-02 m
TOTAL PIPE LENGTH 127 m
Q HEATPUMP 1385.0 W
NUM SEGMENTS 20
MAX TIME 3000 s
REPORT FREQUENCY 50
MODELCOEFHANBY 0
MODELCOEFPLUGFLOW 0
MODELCOEFWELLMIXED 1
CIRCTYPE HEATPUMP
HEATTRANSFERTYPE PIPEOUTERBOUNDARY
HEATPUMPTESTTYPE STEPCHANGE

Figure 3.12: Comparison of bracketing simulation modes to experimental data
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to calculate a weighted average as the final cell temperature. This allows a blended

response to be achieved for the entire system. Based on the response in Figure 3.12,

it would seem that a blending of 50% may result in a response that matches the

experimental data well. The resulting comparison of a 50% plug flow and 50% well-

mixed blend with the experimental response is shown in Figure 3.13.

Figure 3.13: Comparison of a blended transport response model to experimental data

The comparison of the blended model with experimental data in Figure 3.13 is

much better than either of the two bounding models. This is an interesting result,

as this blended approach is analogous to some convection correlations, which are

essentially weighted averages of results between different flow regimes. Thus, there

is a precedent to continue researching this as a suitable approach, and this is highly

recommended as future work. To conclude the current research work, it is sufficient

to continue using a bounding case during the investigation within the whole building

energy simulation environment.
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3.7 Investigation in Whole Building Energy Simulation

A bounding approach is employed to conclude the investigation of transport delay

effects in a whole building simulation environment. As described previously, the two

bounding cases of well-mixed (or Hanby) and plug flow will provide useful infor-

mation for understanding the effect. The whole building simulation tool utilized is

EnergyPlus. EnergyPlus contains a detailed fluid loop simulation model (described

in Chapter 2), as well as detailed interaction between zone simulation models and

other aspects of the domain. EnergyPlus was enhanced with the ability to do heat

transfer pipe components, as well as capture the related transport phenomena, using

the Hanby model.

3.7.1 EnergyPlus Test File

The base input file used for this study is a five-zone office building served by chilled

water and hot water loops. The chilled water loop is then connected to a condenser

loop which is conditioned by a vertical ground loop heat exchanger. The HVAC

system for the entire simulation model consists of the following:

Air Loop This loop serves the zones with chilled water and hot water coils

Chilled Water Loop This loop serves the chilled water coils with a connection to

the ground heat exchanger heat pump system, with auxiliary cooling as needed

Hot Water Loop This loop serves the hot water coils with a connection to the

ground heat exchanger heat pump system, with auxiliary heating as needed

Condenser Loop This loop serves the chilled and hot water loops via heat pump

coils, with a vertical ground heat exchanger ultimately connecting the system

to the environment.

In EnergyPlus input nomenclature, the object which simulates the heat transfer

and transport delay of a pipe placed in the outdoor environment is the Pipe:Outdoor
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object. In this model, the pipe outer boundary condition is the outdoor air, coupled

via a convection coefficient which is dependent on wind speed from the weather data.

The other boundary condition to the pipe heat transfer model is the fluid inlet con-

dition, which is defined by upstream components in the plant simulation model. The

model then provides an outlet condition to be utilized by downstream components.

The heat transfer pipe/delay object is placed on the chilled water loop in between

the chillers and zone chilled water coils. This is circled in Figure 3.14, which details

the contents of the entire chilled water loop.

3.7.2 Case 1: Modified Mixing Model

As determined previously, the Hanby model is equivalent to a well-mixed approach.

For comparison purposes, the model was modified to alternatively use a plug flow

governing equation for the discretized pipe object. To enable easy parametric studies,

the EnergyPlus source code, object dictionary, and input files were modified to include

an additional flag on the pipe heat transfer object which is used in the code to select

the appropriate governing equation.

Both flow models, Hanby/Well-Mixed and Plug Flow, were used in two cases: a

100 m long pipe and a 500 m long pipe. In addition, a baseline case was run with no

delay/heat transfer component in place.

To evaluate the effects of adding the delay object, the chilled water loop demand

is reported. This will be affected by the heat transfer in the loop, as well as the delay

effects. If effects are seen from the delay, they should represent an effect that will

progress through the nested loop structure “downstream” and affect the ground heat

exchanger conditions, and also “upstream” and affect the chilled water coils.

The results of all configurations are shown as Figure 3.15. For any configuration,

the system response is much different than the base case. However, the differences

between mixing models are not significant. There is no significant lag and the different
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Figure 3.14: Chilled water loop topology. Delay/Heat Transfer component is circled.
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Figure 3.15: Chilled water loop demand profiles for a single simulation day under
different transport modeling configurations

between well-mixed and plug-flow is present, but very small, as shown in Figure 3.16.

Figure 3.16: Closer view of chilled water loop demand profiles for a single simulation
day under different transport modeling configurations

Instead of the delay causing an effect on the loop demand, the heat transfer to

the loop appears to be the dominating effect on the loop. This indicates that further

work is required to isolate the effects of the delay without having a heat transfer

impact.
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3.7.3 Case 2: Isolated Delay Model

The previous study showed that by adding a pipe heat transfer/delay component onto

a chilled water system, the demand is not drastically impacted by a lag effect, but

more prominently affected by the heat transfer added/rejected to the loop. To remove

this effect, the model was modified further to approximate an adiabatic situation. The

purpose is to capture a case where the heat transfer from the pipe may be minimal,

whereas a long run of pipe could cause a significant delay. The approximation is

employed by overriding the boundary temperature on the pipe exterior, using the

current fluid entering temperature value:

Tair = Tf,i (3.51)

If the system were steady state, this would result in zero heat transfer between the

fluid and the environment. However, in this transient model, heat transfer can exist

due to heat storage in the pipe wall itself. If the fluid entering temperature varies

significantly, the transient storage in the pipe will be more prevalent, but expected

to be much less than in the previous case.

In addition to the source and input changes, the loop demand reporting is replaced

with the temperature difference across the pipe component:

∆T = Tfluid,out − Tfluid,in (3.52)

In this way, the effects of other components on the loop are removed. The tem-

perature response is important in cases where the loop response is dependent on the

temperature distribution. Consider an economizer application, where the heat trans-

fer through the heat exchanger is passive, and dependent only on the entering fluid

temperatures. The amount of heat transfer available to reject through economizing

will be heavily dependent on the temperature response of the delay component.
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The same input file is utilized as in the previous case, and the same configura-

tions are simulated, however there is no representative temperature difference for a

base case, since the base case has no component. The results of this are shown in

Figure 3.17.

Figure 3.17: Temperature difference across delay component with boundary heat
transfer minimized.

In Figure 3.17, the temperature difference is a maximum for the 500 m configu-

rations at about 0.35 ◦C. For the 100 m configurations, the temperature difference is

smaller, less than 0.1 ◦C. For reference purposes, the operating flow rate on this loop

was approximately 3.29 kg/s.

Continuing the application of a water-side economizer, adding this delay with

a minimized boundary heat transfer effect would result in a difference in approach

temperature of between 0.05 ◦C and 0.35 ◦C during this day, depending on the con-

figuration. The flow and demand on this loop result in a typical operating ∆T across

supply equipment of 2 ◦C. As such, the effect of the delay is a significant portion.

The effect of a delay could be blurred on loops where the delay object is upstream

of ideal, controlled, or non-temperature dependent components. These components

could provide an outlet temperature regardless of the delay effect. As such, the delay

effect would resolve to a simple heat transfer interaction with the loop. However,
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if the delay is added directly upstream of temperature dependent components, the

effects will be much more prevalent. In the previous case, the loop demand was not

affected significantly because of the idealization of component models, and their lack

of temperature dependence.

The selection of a delay model itself appears to be much less important. Just as

in the previous case, the results in Figure 3.17 show that there is a difference between

models, however it is not significant. Both the well-mixed (Hanby) and plug flow

models are likely to provide a suitable representation that is within the uncertainty

present in the system measurements.

3.8 Conclusions

An experimental data set was created for investigating the detailed phenomena of

transport delay, and used in a set of demonstrations of a model testbed. The testbed

was able to bracket the experimental data using bounding modeling approaches which

are fundamentally based on distinct transport phenomena described early in the dis-

cussion. The model was able to match the experimental data much better with a

blend of results from different models, though this is likely to be highly dependent

on specific configurations, so broad guidance is not provided by this work, only a

demonstration. In addition to these bracketing cases, a third approach was expected

to provide another option (Hanby et al., 2002), however it was determined that this

model was simply a manifestation of the already-in-use well-mixed model, so further

work directly with this approach was not necessary. Both model approaches were

implemented as a component model in the central plant simulation engine inside En-

ergyPlus. Two simulation studies indicate that the effect of delay is important in

loops with temperature dependent performance, but the effect on energy usage can

be blurred by idealized component models.
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CHAPTER 4

Efficient Horizontal Ground Heat Exchanger Simulation with Zone Heat

Balance Integration

Abstract

For horizontal heat exchangers buried near a building slab or basement,
interaction between the heat exchanger and the zone can be significant.
For heat exchangers with multiple pipes in close proximity to each other,
the thermal interference effects can also be significant. Previous simula-
tion methodologies including line source and numerical solutions do not
model these phenomena in a general manner. Furthermore, previous mod-
eling approaches lack integration with other simulation domains including
zone heat balance calculations and fluid loop solvers.

A numerical model for horizontal ground heat exchanger applications is
presented, featuring a computationally efficient mesh and flexible heat ex-
changer tube placement. The model integrates the ground with zone heat
balance calculations and hydronic system simulation through boundary
conditions. The model is implemented within a whole building energy
simulation program. Thermal interaction effects between heat exchanger
pipes are captured including circuiting effects of the fluid flow direction
in individual pipes.

The model is validated using experimental data taken at a test facility
currently researching foundation heat exchangers. Undisturbed ground
temperature data is used to estimate ground and boundary properties.
Fluid temperature and zone heat transfer validation is then performed
with the estimated parameters. With a full system simulation in place,
the model predicts heat pump entering fluid temperature with mean bias
error of 1.3 ◦C (2.3 ◦F) and basement wall heat flux with mean bias error
of 1.1 W/m2 (0.35 btu/h ft2). This accuracy is achieved with a coarse grid
that ensures a small computational footprint suitable for implementation
in a whole building energy simulation program.

This work has been accepted for publication as a journal article (Lee et al.,
2013).
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4.1 Background

As time passes, and concerns about energy usage become more prevalent, increased

demand is imposed on the building design industry to achieve improved efficiency and

lower energy footprints. Stricter energy standards are increasing the requirements of

building modeling as a means to evaluate designs and energy conservation measures.

Guidelines have been provided by Stocki et al. (2007) relating to proper model pa-

rameters and assumptions, though no details were provided for handling ground heat

transfer effects. Thomas and Rees (2009) showed that the earth heat transfer through

building floors can be significant, while Adjali et al. (2004) and Andolsun et al. (2010)

stated that there is much uncertainty in ground heat transfer prediction based upon

modeling approach and inputs. Ihm and Krarti (2004) developed a detailed founda-

tion heat transfer model and implemented it in EnergyPlus (Crawley et al., 2001),

improving the heat transfer modeling capabilities for ground-coupled zones.

Smaller energy footprints of highly efficient buildings have opened the door for

new heat exchanger configurations, including placement in the near-field of a building

foundation or basement (Cullin et al., 2012; Xing et al., 2011; Den Braven and Nielsen,

1998). These foundation heat exchangers have been modeled by Xing et al. (2011).

The current work builds on that with additional simulation capabilities:

• Direct coupling to a zone heat balance within a whole building energy simulation

environment

• Improved flexibility for pipe placement within the calculation domain

• Capturing enhanced effects including axial temperature distributions and cir-

cuiting/flow direction effects with multiple pipes

• Improved computational efficiency using an intelligent mesh scheme

The model is applicable to foundation heat exchangers, horizontal heat exchangers
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and district heating or cooling systems. The grid generation techniques used make

this model suitable for simulation of long piping systems, as the computational mesh

is refined in areas where the thermal interaction is highest, and the model is proven

to provide accuracy with a highly coarse grid.

In addition, the model can be applied to niche configurations, including modeling

the supply water pipe from a utility junction to a building, modeling the horizontal

legs between vertical boreholes in a ground heat exchanger field, and multiple pipe

configurations with heating, cooling, or neutral pipes running in proximity. The

model fully accounts for the effects of circuiting and flow direction and is suitable for

implementation in a whole building energy analysis program.

4.1.1 Preliminary Modeling Discussion

Existing horizontal ground heat exchanger models have three shortcomings when ap-

plied to novel configurations in whole building energy simulation. The first is the lack

of generality. Approaches using a line source allow generalized pipe placement (mul-

tiple pipes with superposition), but are limited in integration capabilities. Building

simulation fluid loop solvers using a flow-wise component-by-component simulation

order are designed for component models that input entering fluid conditions and

return fluid exiting conditions. The line source model is driven instead by the line

source intensity, or the heat rejection rate of the source. Several studies (Ingersoll and

Plass, 1948; Den Braven and Nielsen, 1998; Chengju et al., 2012) utilized line source

theory to simulate buried pipes and heat exchangers. Other studies (Ngo and Lai,

2005; Sadegh et al., 1987) used a simplified representation of the fluid as a boundary

condition to the ground domain.

The second shortcoming is the lack of coupling to entire fluid loop simulation

engines. This is enabled by simulating the transit of fluid through the model, from an

inlet to an outlet. This allows coupling the model to a fluid loop to evaluate the energy
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usage or dynamic response of an entire system. Numerous studies on buried pipes

or heat exchangers (Bau and Sadhai, 1982; Bronfenbrener and Korin, 1999; Chung

et al., 1999; Esen et al., 2007; Said et al., 2009) modeled the fluid without capturing

the transit effects, limiting the possibility of performing whole system evaluation.

Yavuzturk and Spitler (1999) described a vertical ground heat exchanger model that

relies on response factors to calculate the fluid response through the heat exchanger,

and includes the fluid transit effects. Tobias (1973) used an approximation of the

fluid response in the system to allow fluid transit to be captured in simplified models.

Mei (1988) and Piechowski (1999) utilized specialized coordinate systems to capture

the fluid transit with either one or two pipes in the domain. The dual coordinate

system approach for embedding pipes in the domain by Piechowski (1999) is a suitable

starting point for developing a generalized horizontal ground heat exchanger model,

because the grid is refined in the near pipe region, without the need for a complicated

or highly dense coordinate system.

The third shortcoming in existing models is the lack of integration between the

ground and zones. In whole building energy simulation programs, ground heat trans-

fer models must be integrated with the zone heat balance calculations to account for

dynamic thermal feedback. Binks (2011) noted the importance of accurate ground

temperature prediction for building simulation, though zone heat balance simula-

tion models generally use a simplified representation of the ground, utilizing a direct

boundary condition on the bottom of the ground-coupled floor surface. Cullin et al.

(2012) utilized an iterative approach to couple separate zone and ground heat ex-

changer models when simulating foundation heat exchangers. This development path

resulted from the idea that thermal ground interaction was secondary to other heat

transmission in the zone (Claesson and Hagentoft, 1991). The interactions between

the zone and a ground heat exchanger are secondary in traditional heat exchanger

configurations, as there is sufficient distance between the two to decouple them. For
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low energy applications where these heat flows are more dominant, this assumption

can break down.

Coupling the three domains: ground, zone, and fluid, is a major contribution of

the current model. In addition to this integration, the effects of pipe placement,

flow direction, thermal interference between pipes, and circuiting are captured by the

model. Simulation mechanics and assumptions vary between simulation programs,

however it is common for the zone heat balance to be a quasi-steady-state solution.

Pumping and piping simulation is often similar, with steady state mechanics utilized

over a single step in time. Coupling these quasi-steady simulation mechanics to a

transient ground simulation model requires special treatment of the various domain

hooks. This is further complicated if the simulation domains operate at independent

time step levels, such as with the whole building energy simulation tool EnergyPlus

(Crawley et al., 2001). Coupling the different simulation mechanics and independent

time integration steps is addressed by the current model which improves the feed-

back between simulation systems and improves accuracy of the whole building energy

simulation environment.

4.2 Methodology

The physics of the ground heat exchanger model consist of thermal interaction be-

tween a fluid being transported through the domain, the transient ground mass, and

the various boundary conditions including the ground surface, zone heat balance, and

far-field. The physical domain can contain multiple pipes located near a basement

zone, possibly in the excavation area of the ground. By simplifying the geometry

into a Cartesian simulation domain and assuming a far-field boundary distance, the

corresponding simulation domain is shown in Figure 4.1. In this figure, the domain

cross section contains a basement region, and as an example, there are five tubes

placed in the domain. The domain consists of a series of these two-dimensional cross
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Figure 4.1: One possible simulation domain that includes heat exchanger pipes and
a basement zone

sections extruded uniformly in the axial pipe direction. Thus all pipes and any other

objects in the domain are parallel with uniform geometry throughout the axial length.

This assumes that any zone interaction exists over the entire length of the domain.

When basement walls only exist for a portion of the domain length, multiple domains

are implemented, of which some will include basement interaction and some will not.

Based upon the required detail, careful circuiting of the fluid between the domains

can be implemented to ensure the fluid path is exactly as in the real system. For the

case of foundation heat exchangers, the tubes may “wrap” around multiple corners

of the basement in reality. The model assumptions do not allow this to be applied

directly. Instead, the physical domain must be simplified with an effective overall

length to capture the corner effects.

As shown in Figure 4.1, the basement region is a rectangular section that is “cut-

away” from the ground domain. The size of the cutaway is variable and is selected to

fit particular applications. In cases where the floor heat transfer is significant, such as

if pipes are placed underneath the floor, the entire basement floor may be modeled.

Whereas if this is less significant, a smaller representation of the basement floor can
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be utilized and will represent the entire floor. Of course if there is no basement in

the pipe region, then this will not be present in the domain, and the farfield will be

applied at the Cartesian domain boundary.

4.2.1 Simulation Domain

The simulation domain consists of the ground, plus the integration with the zone

and piping systems, along with other boundary conditions. Groundwater movement

is not included, but the effects of stagnant moisture content in the soil, including

freezing, are simulated. Moisture transport effects are excluded because parameters

required for groundwater flow models are only known under specialized conditions.

Raymond et al. (2011) demonstrated (through validation of a numerical model us-

ing data from an experimental test site (Austin et al., 2000)) that for a significant

range of groundwater flow conditions, the effects on a thermal response test are neg-

ligible. It is assumed that the inclusion of stationary moisture content can provide

sufficient accuracy. The freezing is simulated using an effective specific heat over a

small temperature range near the freezing point. The total energy within this range

is equivalent to the latent heat of melting. This method is described by Lamberg

et al. (2004).

The heat transfer in the ground is governed by a transient energy balance:

∂T

∂t
= α∇2T (4.1)

This equation is applied to a mesh created in the domain. The coordinate system

is Cartesian, suitable for the rectangular domain (Figure 4.1). Since the domain will

contain objects besides just the ground, the mesh is created using a partition ap-

proach. Vertical and horizontal partitions are aligned in the domain at the location

of each pipe or domain object. A single pipe in the domain, along with the base-

ment surfaces, results in two partitions in each of the x and y directions, as shown in
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Figure 4.2a. The partition is a finite size, large enough to contain the pipe or base-

ment surface. Vertical partitions become a single cell wide, and horizontal partitions

become a single cell tall as part of the overall mesh.

(a) Partitions placed in the domain (b) Spaces between partitions meshed

Figure 4.2: Domain visualization for the partition based mesh development procedure

The regions between the domain partitions are then meshed, as shown in Fig-

ure 4.2b. The mesh may be uniform throughout the region or utilize a symmetric

geometric series expansion to define the cell distribution. A uniform mesh distributes

the cells evenly. The geometric distribution is calculated based on the number of cells

and an expansion coefficient ζ. The geometric distribution is symmetric, thus one

side of the region is meshed, then mirrored to the other half. The width of each cell

is calculated as:

∆x1 =
∆xregion

2

Ncells/2∑
j=0

ζj

−1

(4.2)

∆xi = ∆x1ζ
i (4.3)

Once complete, the domain may be meshed as in Figure 4.2b. The number of cells

is the same in each mesh region between objects. As partitions get closer, the grid

then becomes refined, which is beneficial as these areas would be expected to have

the highest level of thermal activity. This refinement is enhanced if the geometric

mesh distribution is utilized. The domain is then extruded in the pipe axial direction
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to provide three dimensional cells.

4.2.2 Coupling: Pipe & Ground

The fluid passes through the three-dimensional domain inside each pipe segment. The

flow direction is defined per segment, and the same flow can pass through multiple

pipes. This allows a single circuit to have multiple passes within the domain, cap-

turing the effects of flow direction. Multiple circuits can then be placed in the same

domain to allow multiple fluid inlets and outlets. The transfer from one segment to

another is idealized, the effects of a u-bend at the end of the domain are not sim-

ulated. Instead, the fluid information is immediately transferred from one outlet to

the next segment inlet.

Figure 4.3 shows different approaches to simulate the pipe within the Cartesian

grid. Utilizing a single temperature for the entire cell, which is an average of the

contents in the cell, is shown in Figure 4.3a. With this method, it is difficult to

capture the fluid-soil interaction, as the effects are lumped.

An additional level of detail is shown in Figure 4.3b, in which the fluid and pipe

are explicitly modeled. This is a suitable approach, however, the mesh near the pipe

is as coarse as the surrounding Cartesian system. Since this area contains the highest

thermal activity, this region warrants additional refinement.

Utilizing a radial coordinate system embedded within a Cartesian cell was pro-

posed by Piechowski (1996). Figure 4.3c shows a full radial coordinate system placed

within the Cartesian cell. Note that this results in an interface cell which exists at

the four corners of the Cartesian cell boundaries. The surrounding Cartesian system

interacts with this interface instead of directly with the embedded pipe cell. The ra-

dial system is then utilized to simulate the near-pipe region, and inherently provides

a refined mesh in this region.

The radial system could remain with interactions in each of the Cartesian direc-
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(a) Using a single average cell temperature (b) Simplified representation of pipe or fluid

(c) Embedded radial coordinate system (d) Embedded axisymmetric radial coordinate
system

Figure 4.3: Approaches to simulate pipe cell effects within a Cartesian coordinate
system domain
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tions. However, the fluid cell, which is developed in a following section (4.2.3) uses

a uniform condition at each axial cross section. Thus, any angular variation will

ultimately not be recognized by the underlying fluid. To improve computational ef-

ficiency, the calculations are reduced to an axisymmetric radial system as shown in

Figure 4.3d. All four Cartesian neighbors interact with the interface cell, along with

the single radial direction. The current model builds upon the original dual coordi-

nate system approach by Piechowski (1996) with fully generalized pipe placement in

the domain.

The thermal interchange between the coordinate systems is governed by the fol-

lowing energy balance:

ρV Cp
∂T

∂t
=
∑

q̇in,Cartesian + q̇in,radial (4.4)

For the Cartesian heat transfer calculations, the thermal distance is the distance

from the centroid of the neighbor Cartesian cell to the corresponding interface thermal

node, as represented by the arrow mapping from a Cartesian cell into the coordinate

system interface in Figure 4.3d.

RCartesian 7→interface =
∆yi

2ki,j∆x
(4.5)

For the radial system a standard radial resistance is applied:

RRadial 7→interface =
ln (ro/rc)

2πk
(4.6)

From the interface inward radially to the pipe wall, the heat transfer is modeled

using a transient radial formulation. At the pipe wall to fluid interface, the approach

requires special treatment, as described next.
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4.2.3 Coupling: Pipe & Fluid

Figure 4.4: 2D and 3D representations of the fluid cell, with radial coordinate system
nomenclature

Figure 4.4 shows a number of features related to the fluid cell geometry. The fluid

cell is a cylindrical finite volume cell with a representative temperature located at

the center of the flow. The fluid inlet at any cell is a well-formed boundary condition

of temperature and mass flow rate. The pipe wall is a radial finite volume cell with

a representative temperature located for thermal network calculations at the radial

centroid (see Figure 4.4). The fluid and pipe cells are coupled via the heat convection

at the pipe inner surface. During a given iteration, the pipe wall has a single, uniform

temperature. By assuming the entering fluid mixes with the fluid currently existing

in the cell, the governing equation is the following energy balance:

mCp
∂Tf
∂t

= ṁCp (Tin − Tf ) + UA (Tpipe − Tf ) (4.7)

The accuracy provided by this equation will depend on the domain configuration,

especially the axial length of each pipe segment. The actual phenomena occurring

within the pipe at a given point in the system includes mechanical mixing, thermal

diffusion, boundary heat transfer, entry-length effects and varying pipe geometry and

piping connections. Assuming the flow is generally turbulent, this equation which

assumes mixing provides the accuracy required for whole building simulation appli-
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cations.

The surface conductance U is calculated as the series radial resistance from the

fluid to the pipe wall radial centroid, thus including convection and conduction. For

turbulent flow, the convection coefficient is calculated based on current fluid con-

ditions using a well-accepted form of the Nusselt correlation by Dittus and Boelter

(1930):

NuD = 0.023Re0.8
D Prn [ReD ≥ 2300] (4.8)

The exponent n is set to 0.4 when the fluid is being heated and 0.3 when the

fluid is being cooled. This equation is an explicit expression for Nusselt number that

assumes a uniform set of properties over the fluid. In heat exchanger applications

of this model, the temperature variation is low enough to allow the use of such an

equation. Through the course of a simulation, the thermal properties of the fluid are

updated, however for a single iteration the thermal properties of the fluid are fixed.

Although laminar flow conditions are not expected in heat exchanger applications,

this model uses a constant value of Nusselt number as shown in Equation (4.9) for low

Reynolds Number conditions. The constant value is an analytic solution assuming

fully developed, steady, one-dimensional flow in a circular tube with a constant surface

temperature.

NuD = 3.66 [ReD < 2300] (4.9)

Axial temperature variation in the soil, pipe and fluid are predicted in this model.

The use of this constant surface temperature result for Nusselt relies on an assumption

that the radial temperature distribution provides a more significant effect on the heat

transfer phenomena. Other approximations could be utilized (for example assuming a

constant wall heat flux, NuD = 4.36), but are not expected to provide any additional

accuracy. The current set of applications for this model do not warrant a more

detailed approach.
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Under zero-flow conditions, a prescribed convection coefficient simulates the free

convection heat transfer in the pipe.

The fluid cells are simulated flow-wise from the circuit inlet and downstream to

the circuit outlet. Circuit inlet conditions are well-formed from other components in

the fluid loop simulation system. The flow-wise simulation captures directional flow

circuiting effects. The integration between this fluid circuit and the entire fluid loop

simulation model is described next.

4.2.4 Integration: Fluid Loop Simulation

The fluid heat transfer within the pipe is governed by the equations in the previous

section. The fluid circuit inlets and outlets of this model are then connected to a fluid

loop simulation within the whole building energy analysis program. At each iteration,

the fluid circuit inlet provides a momentum and energy boundary condition specified

by temperature and flow rate conditions. The fluid outlet condition is governed by

continuity and the energy balance on the outlet cell of the circuit (equation (4.7)).

The loop simulation is quasi-steady state operating at a variable time step. The time-

stepping solver can also back-step and repeat a time step over as necessary to achieve

system convergence. The ground domain is fully dynamic, thus the coupling between

the two domains acts as an interface between time stepping paradigms. The fluid and

near pipe region must tentatively step in time at each simulation call, capturing the

transient response from the fluid passing through the domain. However, since the loop

solver is quasi-steady-state, the entering fluid temperature in the next iteration may

be drastically different, and the tentative results must be overridden until convergence

is attained.

In terms of this current research project, this fluid loop simulation model was

developed as a major research project. This is described fully in chapter 2.
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4.2.5 Integration: Zone Heat Balance

Integrating the zone heat balance with the ground simulation, and therefore with the

fluid in the heat exchanger captures the thermal feedback between the two systems.

The zone heat balance is governed by equation (4.10), which is a transient energy

balance of thermal phenomena in a zone. The first term on the right hand side is

the sum of internal gains in the space (people, equipment, lights). The second term

represents the infiltration gain on the space. The third term represents the convective

heat transfer from each surface in the space to the air. The final term represents the

energy provided by system conditioning equipment:

macp,a
∂Ta
∂t

=
N∑
i=1

q̇int + q̇inf +

Nsurf∑
i=1

q̇conv + q̇sys (4.10)

The zone air is then connected thermally with the zone surfaces via the convective

heat transfer rate, governed by Newton’s law of cooling:

q̇conv = hA (Tsurface − Ta) (4.11)

The convection coefficient, h, is a function of several variables, depending on the

model used for the zone air conditioning. Generally it will be a function of diffuser

type and location, surface orientation and overall zone air flow rate.

The heat transfer through the surface is transient conduction, which is typically

modeled using a conduction transfer function method or a finite difference algorithm.

Conduction transfer functions are used widely in whole building energy simulation

due to the lightweight computational burden. Response factors are generated one

time for each construction, and these are then used in a time series calculation to

determine the response of the surface. For calculating the heat flux on the inside

of a building surface, using the temperature and heat flux histories of the wall, the
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response factor expression takes the following form:

q′′in (t) = −
NZ∑
j=0

ZjTin,t−j∆t

−
NY∑
j=0

YjTout,t−j∆t +

NΦ∑
j=1

Φjq
′′
in,t−j∆t

(4.12)

In equation (4.12), the terms Z, Y , and Φ represent the conduction transfer

coefficients. While conduction transfer functions are rapid and convenient for whole

building energy simulation, they cannot be used directly in the simulation of surfaces

with variable thermal properties. Barbour and Hittle (2006) pre-calculated extra sets

of conduction transfer functions to handle variable properties. The number of extra

sets ranged from 3 to 599,999 to achieve proper accuracy. The computational cost

associated with the higher sets of transfer functions limits the application of such

methods in whole building energy simulation.

The exterior of the zone surface is then coupled to the ground domain. This

is performed using a convective boundary with a large value of surface conductance.

This essentially becomes a temperature boundary on the surface. The ground domain

supplies the surface heat balance with an average temperature for transient surface

conduction calculations, and in return the surface heat balance supplies the ground

domain with an average heat flux. The ground domain uses this heat flux as the

boundary for cells adjacent to the surface.

Integration of the ground domain and the zone heat balance occurs at the surface

exterior. Other possibilities exist, such as including the zone surface directly in the

ground model domain. The coupling to the zone air heat balance would then occur at

the convective boundary between the zone air and the wall interior surface. Allowing

the surface heat balance manager to simulate the wall itself allows the wall solution

type to be separate from the ground model. The wall may then be simulated using

transfer functions or a finite difference approach, and could contain variable properties
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or other specialized features.

The ground domain is simulated at the time step of the air and fluid system

simulation. The zone and surface heat balance equations occur at a different time

step. Thus, the boundary conditions imposed on the ground domain are constant

during all ground time steps until the next surface time step. When the surface

begins a new time step, the aggregated energy added by the ground domain over

the previous time step is used as the boundary. Since the integration occurs at the

exterior surface of the domain, and the zone typically runs at time steps less than

one hour, the lag will be insignificant over the course of a long-term simulation.

Very light-weight surfaces may be more prone to inaccuracy with this assumption,

however this effect is further dampened if the zone is well-controlled, such that the

inside temperature is nearly constant.

4.2.6 Ground Domain Boundary Conditions

A Dirichlet condition (T = T (z, t)) is applied on the ground domain at the far-field

faces. In this model, cell centroids are not aligned directly at the outer boundary

surface, so the far-field temperature is applied to the outer surface of the cell. An

energy balance is evaluated on the cell to determine a centroid cell temperature.

The boundary temperature is calculated at a given time and depth using a standard

expression introduced by Kusuda and Achenbach (1965):

T (z, t) = T s −∆T s × e−z
√

π
ατ × cos

(
2πt

τ
− z
√

π

ατ
− θ
)

(4.13)

Three parameters,
{
T s,∆T s, θ

}
, must be estimated from knowledge of the ground

temperature variation, either approximated from weather or location data, or gener-

ated from experimental ground temperature data.

The ground surface energy balance includes convective heat transfer as well as

radiation and evapotranspiration on the exterior surface, with conduction to the in-
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terior of the domain. Evapotranspiration is modeled using the approach presented

by Allen et al. (1998), which governs the rate of evapotranspiration according to:

hfgE =
δ (Gr −Gs) + ρacp,ae′

ra

δ + γ
(

1 + Rs
Ra

) (4.14)

4.2.7 Solution Algorithm

The ground domain is solved with an inherently stable implicit numerical formulation

to ensure robustness within the variable time step environment. The system of equa-

tions is solved via iteration. Initialization of the domain is performed using a thermal

gradient in the domain according to the far-field boundary specification. Convergence

of the iteration is determined by a specified maximum absolute temperature change

in the domain.

The integration between simulation domains adds complexity to the solution

scheme for the model. As already mentioned, the zone heat balance occurs at a

time step larger than the ground model, so that the effects are lagged between the

two domains. In addition, the fluid loop solver is an iterative quasi-steady solution

that can both vary the time step and back step within the main iteration loop. It

is expected that the ground domain will respond fastest in the near pipe region,

where temperatures could rapidly change based on loop conditions. Because of this,

the ground domain thermal network is updated at variable time steps, aiding in a

lightweight computational footprint by not simulating the ground at each iteration.

The overall time step operation and model calling points are shown in Figure 4.5.

The ground domain is updated on the first system time step, while the fluid circuit

is shown to be embedded inside the system time integration loop. Figure 4.5 also

shows that the surface temperatures are updated at a higher level, resulting in a lag

of information transfer between the domains.
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Begin Zone Timestep Loop

Calculate Tsurface,out
• using ground temperatures from previous time step

• using zone-surface boundary model

Calculate Tsurface,in
• using surface thermal history

• using CTFs with equation (4.12)

Calculate Tzone

• using predictor/corrector approach

• using heat balance equation (4.10)

Begin System Timestep Loop

Calculate Tf,i
• calculated from upstream hydronic components

First system time
step within this
zone time step?

Update ground domain
(not near-pipe):

• Update boundaries

• Update Cartesian cells

Update fluid circuits:

• Pipe/near-pipe ground temperature

• Calculate Tf,o using equation (4.7)

Last system time
step within this
zone time step?

Last zone time
step in this
simulation?

end

yes

no

no

yes

no

yes

Figure 4.5: Solution logic of integrated modeling system, showing relevant variable
calculation points
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4.3 Model Evaluation

Foundation heat exchangers (Spitler et al., 2010) are a special type of ground heat

exchanger placed in the excavation area of a basement. This placement results in sig-

nificant thermal interaction with the zone. Multiple buried pipes can be laid in this

same trench, which results in significant thermal interaction between pipes. These

interactions, along with the relatively close proximity to the ground surface result

in a lower heat exchanger capacity per length compared to vertical borehole heat

exchangers, which interact with the nearly constant deep ground temperature. For

traditional building design, foundation heat exchangers do not provide sufficient ca-

pacity, but low-energy designs with lower peak loads can make use of these in some

climates and configurations (Cullin et al., 2012).

4.3.1 Experimental Facility

The foundation heat exchanger configuration provides a useful validation configura-

tion for this modeling work as it includes high thermal activity between multiple

pipes and between the ground and zone. An experimental facility in Oak Ridge, TN,

USA (as described by Xing et al. (2011)) consisted of a full scale low-energy residen-

tial building with a foundation heat exchanger and a multiple pipe horizontal heat

exchanger in a utility trench. A photo of this piping is shown in Figure 4.6a, with

a simplified schematic of the foundation heat exchanger in Figure 4.6b. These two

figures show how the tubing is laid directly into the already excavated areas. This

reduces or eliminates the cost of drilling and excavation work that is done specifically

for heat exchanger installation.

The fluid loop, as installed at the experimental facility, is shown in Figure 4.7a.

Undisturbed ground temperature was measured away from the heat exchanger in-

stallation. This data was used to perform parameter estimation to determine model

parameters. Fluid temperature was measured at multiple locations around the loop.
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(a) Photo of experimental facility, from Spitler
et al. (2010)

(b) Simplified schematic

Figure 4.6: Foundation heat exchanger installation and representation of thermal
interaction

For the current validation efforts, only the loop inlet and outlet temperatures were

utilized, for both component-model and system-level validation studies. Heat flux

measurements were made along the basement wall at multiple depths, characteriz-

ing the effects of the heat exchanger on the zone. This heat flux data was used in

validating the integration of the ground model with the zone heat balance.

4.3.2 EnergyPlus Model

The model was implemented in the whole building energy simulation software En-

ergyPlus (Crawley et al., 2001) as a new component in the central plant simulation

algorithms. The fluid loop in the experimental facility (Figure 4.7a) consists of a

foundation heat exchanger region near the basement as well as conventional heat ex-

changers, some of which pass through a rain garden area. In EnergyPlus, the system

was modeled as two heat exchangers: the foundation heat exchanger, and the remain-

der of the system as a single horizontal heat exchanger, shown in Figure 4.7b. To

complete the full system simulation in EnergyPlus, a load profile object was utilized

to provide heat input to the loop, and an idealized pump was added to provide flow to

the system. Experimental measurements of system flow rate were used as a boundary
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condition on the model.

(a) Experimental Fluid Loop, from Xing et al.
(2011)

(b) Simplified Line Drawing

Figure 4.7: Experimental fluid loop and the simplified representation used in valida-
tion efforts

For component-model validation, the model directly used the experimental data

for entering temperature and flow rate, overriding any system effects, in order to

isolate the validation to the component itself. In Figure 4.7b, point A represents the

point where experimental temperature was applied. For system simulation validation,

the component directly used the conditions entering from upstream components.

During these studies, the model algorithms were optimized for improved computa-

tional efficiency. Performing an annual detailed foundation heat exchanger simulation

within the EnergyPlus whole building shell using a fully optimized version of the ap-

plication took less than five minutes on a modern computer. This computational

footprint is within acceptable levels for whole building energy simulation.

4.3.3 Numerical Considerations

A typical numerical modeling approach for ensuring grid independence consists of

running with an increasingly denser mesh until a convergence criterion is achieved,

usually a maximum temperature differential in the domain between passes. As the

results become independent of the grid, the change in results diminishes. The inde-

pendent domain is used for subsequent calculations.
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A feature of the current model is the level of integration between the ground, zone

and fluid systems. This integration provides the ability to use grid independence

metrics beyond domain temperatures. Implemented within a whole building energy

simulation environment, the effects on zone and the fluid system provides more rele-

vant metrics. The grid independence study focuses on fluid and ground temperatures,

but also includes the effects on zone loads, which directly impact energy use. The

whole building simulation environment also requires a model that is computation-

ally efficient. A typical grid independence analysis will produce a fully independent

grid, but at the cost of an unusable grid configuration. This grid independence study

balances computation and accuracy, with a focus on building energy use as a metric.

4.3.3.1 Preliminary Discussion

The grid independence study was performed varying the grid using three mesh density

parameters, each of which has a distinct effect on the accuracy and computational

burden of the domain:

• Cartesian Inter-Partition Mesh Density (X and Y directions treated equally in

this study)

• Axial Mesh Count

• Radial Soil Mesh Count

Trials were made of each mesh parameter at the values: {1, 4, 7, 10} (64 total). The

output metrics for this integrated model include the heat exchanger outlet tempera-

ture, spatially averaged basement wall temperature, and basement zone load. Each

of these are averaged for an annual simulation to provide a single metric for the entire

annual run.

XY Mesh Density The XY mesh density is used to define the number of cells

between each partition or surface in the domain. A value of one means that a sin-
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gle Cartesian cell is placed between any two partitions, resulting in a highly coarse

domain. This parameter refines the mesh near the zone surfaces.

Axial Mesh Count Axial mesh count is the number of cells along the length of

the pipe segments placed in the domain. With a single cell, the effects of temperature

non-linearity cannot be captured. The effects of fluid temperature variation along the

pipe length is captured with a higher number of axial cells.

Radial Mesh Count The radial mesh count is the number of radial soil cells inside

a Cartesian cell containing a pipe. Using a single radial cell can provide suitable

accuracy because the Cartesian cell will also contain an interface cell, a pipe wall cell,

and a fluid cell. Even with a single radial cell, the near-pipe region is refined relative

to the Cartesian system. The addition of radial cells is expected to have minimal

impact on results.

Overall Mesh Count The overall mesh count is a function of the three interacting

mesh parameters. An increase in axial cell count increases the number of cells in the

domain linearly, as it is adding domain cross sections. An increase in XY mesh

or radial mesh count is dependent on the number of features in the domain. The

interactions between each parameter are non-trivial, having effects on computation

time, accuracy, and convergence.

4.3.3.2 Computation Time

The computation time results are shown in Figure 4.8 as a function of overall mesh

count. As expected the computation time trend was to rise as the total number of

cells increases. However, the curve is not monotonically increasing. The total cell

count obscures the interactions between the mesh parameters. This is explained by

example: The total cell count may increase as a combined result of increasing the
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radial count and reducing the axial count. The computation cost of additional radial

cells is smaller than additional axial cells, thus the computation time can decrease

even with an increase in overall cell count. As a reference, the total cell count for the

configuration used in further experimental validation is labeled on the plot.

Figure 4.8: Overview of computation time increase as a function of the total number
of cells in the domain

4.3.3.3 Grid Independence

The grid independence study showed that the radial mesh count is relatively insignif-

icant; the XY mesh can provide independence at a low level, whereas the axial mesh

count is a major factor. The axial mesh parameter minimum value was therefore set

at four. Each of the three output metrics (heat exchanger outlet temperature, base-

ment wall temperature, and basement load) are displayed in Figure 4.9. The data

is presented for each metric with three curves. The three curves represent varying a

single mesh parameter while the other parameters remain refined at the maximum

mesh density value. This isolates the effect to the single parameter being swept.

For the heat exchanger outlet temperature (Figure 4.9a), the XY mesh shows a

change of nearly 1.7 ◦C (3 ◦F) from a single mesh value to the next, but the effects

diminish with a coarse grid. The effects of axial and radial mesh parameters provided
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(a) Heat exchanger fluid outlet temperature

(b) Basement wall temperature

(c) Basement zone load

Figure 4.9: Grid independence results: value of a domain property as a function of
varying each mesh parameter separately
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less than a 0.25 ◦C (0.45 ◦F) change across the variation of parameters. This confirms

the expectation that a single radial cell suffices, while values less than 4 for XY and

axial mesh parameters provide independence.

For the basement wall temperature (Figure 4.9b) and basement zone load (Fig-

ure 4.9c), the radial and XY mesh parameters are insignificant, showing less than

a 10% change throughout the parameter variation. The axial effect is more pro-

nounced, showing variation yet trending toward convergence as the number of axial

cells is increased. Since the axial effect did not have an effect on fluid tempera-

ture, this indicates that the axial parameter has more effect on the near-zone region,

allowing ground temperature variation to be included.

4.3.3.4 Discussion

The results of this study were used to guide the selection of model grid parameters

for experimental validation. The model showed greater sensitivity to the axial mesh

count than the other mesh parameters. The selected values for XY and radial mesh

count was 3, while the axial mesh count was more increased to 12. This value results

in a grid where each cell is 3.07 m (10.07 ft) long in the axial direction. Using the

coarse grid for XY and radial mesh parameters, while using a refined axial grid results

in the computation time displayed on Figure 4.8. This very low computation time

is achieved while still producing a high level of accuracy, as demonstrated by further

validation in the following sections. Larger values of each parameter could have

been selected for experimental validation, however this would result in an increase in

computation time and put the model in conditions that may not be feasible for the

simulation of systems in practice.
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4.3.4 Analytic Validation of Interface Cell

The approach used to model the near-pipe region utilizes a coordinate system inter-

face cell to provide thermal interaction between the two coordinate systems. The

energy balance approach used in developing the system of equations to solve the sys-

tem ensures that under the given assumptions, energy will be conserved. However,

the effects of certain assumptions used in developing the interface cell must be vali-

dated to ensure the coordinate system mapping can produce suitable accuracy. These

assumptions include:

1. The interface cell is spatially isothermal and represented in equation develop-

ment by any midpoint on the straight sides of the interface cell.

2. The heat transfer between the interface and the inner radial system is one

dimensional and driven by the distance between the outermost radial centroid

and the midpoint of the side of the interface cell.

3. The heat transfer between the interface and outer cells is Cartesian and driven

by the distance between the Cartesian cell centroid and the midpoint of the side

of the interface cell.

In order to validate this approach, the pipe was approximated as a line source

in an isotropic domain. The idealized simulation domain was constructed with the

following properties:

• A single small pipe, centered in the domain

• Domain size � pipe size

• Constant ground surface and far-field boundaries (T = 0 ◦C (32 ◦F))

• Disabled dynamic properties (constant specific heat)

• Initialization of domain at (T = 0 ◦C (32 ◦F))

• Pipe cell bypassed any fluid flow, a constant heat gain was added to the domain

at the pipe wall
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In this way, the small pipe approximated a line source in an isotropic domain.

This idealization modified the domain boundaries (including the fluid boundary) but

left the coordinate system interface treatment unmodified. The analytic solution for

the idealized situation was described by Ingersoll and Plass (1948):

T (r, t) = T0 +
Q′

2πkt

∫ ∞
X

eβ
2

β
dβ (4.15)

Where β is simply an integration variable, and the integral domain limit X is a

normalized radius:

X =
r

2
√
αst

(4.16)

The numerical model and the analytic solution were sampled at two radial points,

both of which were outside of the interface, in the Cartesian domain. One point

was close to the interface, at a distance of 0.056 m (.183 ft), while the other point

was 0.556 m (1.824 ft) away. The results are shown in Figure 4.10. The simula-

tion domain matched well with the analytic solution, with a peak absolute error of

0.09 ◦C (0.16 ◦F). This peak error occurred at the cell nearest the pipe at the initial

time step, with the error diminishing rapidly in both time and space away from this

point. This is attributed predominantly to the differences between the analytic solu-

tion assumptions and the actual model; the pipe was not actually a line source, but

rather a small cylinder in the domain.

4.3.5 Undisturbed Ground Temperature

Undisturbed ground temperature was measured at the experimental facility at five

depths: 0.3 m (1 ft), 0.6 m (2 ft), 0.9 m (3 ft), 1.5 m (5 ft), 01.5 m (6 ft). At the shal-

lowest measurement, the ground temperature is strongly dependent on surface con-

ditions such as solar gain, evapotranspiration, and convection to outdoor air. As the

depth increases, the temperature becomes less dependent on surface effects, and more
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Figure 4.10: Comparison of analytic and numeric temperatures for validating the
accuracy of the coordinate system interface cell

dependent on deep ground effects. In terms of simulation, these include the selection

of far-field boundary condition models and parameters.

Parameter estimation was performed using this experimental data to optimize sim-

ulation parameters. A cyclic heuristic direct search algorithm was employed where

the objective function was the sum of the squared error between experimental and

model data. This algorithm is robust if given a valid starting point for the opti-

mization. The decision variables in the study were the ground density and specific

heat, and the far-field temperature specification parameters
(
T s,∆T s

)
. The feasible

ranges on the parameters are approximately 20% of the initial starting point. The

initial starting point for thermal properties of the soil are based on a clay loam soil

with water content as described by Lamberg et al. (2004). The initial starting point

for temperature data is approximated from measured weather data. The parameter

estimation procedure provided the values shown in Table 4.1.

Using these optimized parameters, the undisturbed ground temperature was pre-

dicted by the simulation model without any pipes in the domain. The results for

three representative depths are shown in Figure 4.11. The mean bias error over the

entire data set was 0.36 ◦C (0.65 ◦F).
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(a) Depth = 0.30 m(1 ft)

(b) Depth = 0.91 m(3 ft)

(c) Depth = 1.83 m(6 ft)

Figure 4.11: Undisturbed ground temperature results at multiple depths below the
ground surface using optimized (parameter estimation) parameters.
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At greater depths, the model deviated more from the experimental measurements

than at the shallower depths. A possible source of error is the far-field boundary

temperature formulation (Kusuda and Achenbach, 1965). This form of the boundary

condition may not capture all of the boundary effects that may exist in the experi-

mental data, including:

• Unusual variation in seasonal temperature variation in the previous year(s)

• Non-isotropic ground, perhaps layers of different ground materials

• Proximity to underground water table and ground water flow

• Other experimental artifacts (ground not actually undisturbed)

4.3.6 Component-level Validation

Component model validation was completed to demonstrate the model’s ability to

predict outlet conditions provided a tightly bounded solution domain. The entering

fluid temperature was fixed at each time step to experimentally measured heat ex-

changer inlet temperature, which ensured that over the course of the simulation, the

error in total heat transfer to the ground was minimized. By controlling the amount of

heat transfer into the ground, the boundary condition for the fluid remained accurate

and did not drift from the experimental conditions.

The simulated heat exchanger outlet temperature matched experimental data with

a mean error of 0.3 ◦C (0.54 ◦F). The quality of the component-model validation is

better represented with the magnitude of the temperature change across the heat ex-

changer, or heat transfer rate. Assuming a constant specific heat, this was calculated

Table 4.1: Simulation parameters from optimization against experimental undis-
turbed ground temperature

Parameter Name Symbol Value Units Value Units

Ground Density ρs 852.3 kg/m3 53.207 lb/ft3

Ground Specific Heat Cp,s 2073.8 J/kgK 0.49 btu/lb◦F
Average Annual Surface Temperature T s 12.86 ◦C 55.16 ◦F

Avg. Ampl. of Surf. Temperature Variation ∆T s 13.73 ◦C 24.71 ◦F
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as:

q̇ = ṁCp (Tout − Tin) (4.17)

The resulting heat transfer rate is shown in Figure 4.12. With a tightly controlled

(fixed inlet) simulation, the predicted heat transfer rate matched the experimental

data with a mean bias error of 27.5 W (93.8 btu/h).

Figure 4.12: Daily averaged heat heat exchanger heat transfer rate validation using
experimental measured heat exchanger inlet temperature

As shown in Figure 4.12, the model predicted individual peaks of heat transfer

rate with good accuracy aside from deviations in the initial and peak heat rejection

periods. The deviation in the initial period is possibly due to the initialization of the

ground domain, which may be significantly different from that found at the experi-

mental site in the back-filled soil. The undisturbed ground temperature prediction

also could not match experimental measurements in the peak heat rejection period.

The error in heat transfer rate prediction in this region is expected to be due to

this effect, which may be manifested as an error in thermal properties or boundary

parameters.
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4.3.7 System-level Validation

For system simulation, the load on the heat exchangers was calculated from experi-

mental data, and used as a boundary for a full loop simulation. This type of validation

tends toward lower accuracy than the component-level validation because the bound-

ary conditions on the fluid thermal network are not at the inlet of the heat exchanger

model, rather they exist as boundary conditions on the fluid loop. Any inaccuracy

in heat transfer from the fluid to the ground affects the fluid response in subsequent

time steps.

The heat pump entering fluid temperature (same as heat exchanger outlet tem-

perature within the simulation model) is shown in Figure 4.13. The mean bias error

in outlet temperature prediction was 1.3 ◦C (2.3 ◦F). The model showed less accu-

racy predicting temperatures beginning near hour 6500 when the system was off-line

periodically. When there is no flow in the system, the fluid temperature is predicted

using a simplified natural convection approach. As shown in Figure 4.13, the model

tends to under predict these periods. Once flow is restarted, the fluid heat transfer

is governed by the loads in the system and the forced convection model.

Figure 4.13: Daily averaged heat pump entering fluid temperature validation using
experimental heat transfer to drive a full system simulation
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4.3.8 Basement Wall Heat Flux

The experimentally measured data at the foundation heat exchanger test site includes

basement wall heat flux data. For foundation heat exchangers specifically, the thermal

exchange with the zone is an important design parameter. The proximity of the heat

exchanger pipes has a significant impact on the zone loads and the zone conditions.

In EnergyPlus, building surfaces (walls) are defined as single objects, modeled with

one-dimensional transient conduction. Accordingly, for this validation the basement

floor and wall were single surfaces.

Wall heat flux was measured experimentally at three locations along the basement

wall [depths = 0.36 m (1.17 ft), 1.07 m (3.5 ft) and 1.73 m (5.67 ft)]. An area-weighted

averaging scheme was used to regress these experimental values into a single represen-

tative wall heat flux measure. Measurement zones were established for each measured

point. The centroid between the measurements was used as the interface from one

measurement zone to the next. The measured value represented the heat flux for the

entire zone. The area fraction of each zone was used to define the weight of each mea-

surement when averaging them together. This is described visually in Figure 4.14.

The top averaging interface sits centered between measurements 1 and 2, while the

bottom averaging interface sits between measurements 2 and 3. This resulted in nor-

malized weighting factors for each measurement value: measurement #1 has a weight

of 0.28, measurement #2 has 0.27, and measurement #3 has 0.45.

The averaged wall heat flux was then calculated:

q̇′′ = 0.28q̇′′1 + 0.27q̇′′2 + 0.45q̇′′3 (4.18)

With this averaging performed, the resulting average measured wall heat flux

was compared to the simulation wall heat flux for the entire surface, as shown in

Figure 4.15. The overall trend and peak heat transfer was predicted by the model
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Figure 4.14: Description of averaging approach for multiple experimental measure-
ment locations of basement wall heat flux

with an average annual absolute error between the model and experimental data of

1.1 W/m2 (0.35 btu/hft2). The model shows higher fluctuations, which represents

a higher sensitivity to the ground surface phenomena than the experimental top

measurement value.

Figure 4.15: Validation of basement wall heat flux against experimental data

4.4 Special Development

Additional features were implemented or studied as a part of the final stage of this

research project. These include the following:
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• Implementation of a U-Tube borehole model

• Implementation of an improved fluid natural convection model

• Further grid sensitivity analysis

4.4.1 U-tube Borehole Model

The initial piping system model implemented in the program was designed to handle

a single pipe within any Cartesian cell. This alone is sufficient for handling a wide

variety of heat exchanger applications, including single tube run-around systems,

foundation heat exchangers, and any other where the inter-pipe spacing is larger

than the scale of single pipe diameters. In these cases, Cartesian mesh can be placed

between pipes to capture the heat transfer between them. However, in cases where

the pipes are placed much closer, and perhaps embedded within a different material

such as grout, a specialized model has been implemented. The assumptions used in

this specialized model include:

1. Exactly two pipes are placed within a uniform material (grout).

2. The pipes are spaced a specific distance apart which is constant for the entire

length of the borehole, and characterized by a shank spacing.

3. The flow in the pipes is in opposite directions, implying a u-bend at one end of

the domain.

4. The u-bend at the borehole is idealized to the point of being adiabatic, as fluid

is passed from the outlet of one leg directly to the inlet of the other leg.

This u-tube borehole model fits into the main horizontally-oriented Cartesian do-

main in a fashion similar to the single pipe model. Because of this, it is most suitable

for horizontal borehole applications. While these applications are not very popular

in practice, this arrangement is useful because high quality experimental validation

data is available for such a configuration. Future model development includes adjust-

ing the boundary condition specification to allow vertical boreholes to be simulated,
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which is a much more common application. The expansion for vertical boreholes is

unrelated to the borehole itself, so a valid horizontal borehole model is expected to

be a suitable vertical borehole model as well.

4.4.1.1 Introduction

In order to fit with the rest of the model formulation, the borehole heat transfer model

must, at a minimum, be able to track fluid temperature in each pipe from inlet to

outlet. The overall structure of the borehole as it sits within the outer simulation

domain is shown in Figure 4.16. The borehole model exists within the radial system

already established for single pipes, but uses a specialized thermal network. Thus,

the interaction with the outer Cartesian system is no different than the regular single

pipes. Key aspects of the model include:

• Tracking fluid conditions through both legs of the borehole

• Properly interacting thermally with the inner radial soil mesh

• Capturing variation in properties when considering the grout region

To characterize the responsibilities of a single borehole cell within this axial dis-

cretization, a single cell is extracted, and the cross section is shown in Figure 4.17.

Note this shows some of the boundary conditions which are imposed on the governing

equations in the system. Most notable for the current discussion is the addition of

a second entering fluid boundary condition. Aside from this, the addition of grout

and multiple pipe segments is simply an addition to the set of transient conduction

equations already being solved on each cell.

In order to simulate the borehole internal phenomena, a thermal network is es-

tablished and solved numerically, as with the rest of the simulation domain. Model

formulations have been proposed previously. Xu (2007) utilized a lumped technique

where both the inlet and outlet legs of the system are lumped into a single tube

with equivalent thermal properties. This works well in that study, as the simulation
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Figure 4.16: Axial borehole visualization, showing fluid path through u-bend, axial
discretization, and numerical grid within axial cross section

Figure 4.17: Single borehole cell longitudinal cross section
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domain does not rely on tracking fluid temperatures in an axial mesh. For the cur-

rent simulation model this would not useful; it would require an unnecessary level

of bookkeeping to back out individual fluid temperatures. Claesson and Hellstrom

(2011) describe a multipole method to solve for the steady state heat transfer phenom-

ena in boreholes with generalized pipe placement and sizing. The initial assumption

of steady state heat transfer phenomena makes it unattractive considering the oth-

erwise transient nature of the simulation model. However, this method is left as an

alternative approach for future work to allow more precise resistance networks to be

established.

4.4.1.2 Model Development

The borehole is modeled using a transient governing heat conduction equation. The

equation is solved at each thermally distinct entity in each cross section of the borehole

and eventually the fluid system is also solved flow-wise from the inlet to the u-tube

through the idealized u-bend and finally to the outlet of the u-tube. The borehole

model sits within a radial system of soil nodes, which themselves exist within an

interface to the outer Cartesian coordinate system. The interaction with the outer

Cartesian system can be found in section 4.2.2 and is not re-discussed in this section.

The cross-sectional mesh for the borehole model is shown in Figure 4.18. Note

that at a single cross section, there are two cross sections for each of fluid and pipe

material, as well as a special grout interface. In a single pipe section, while the

domain is two-dimensional, the heat transfer within the radial section is modeled as

one-dimensional. This assumption was present for cells with only a single pipe, as

the pipe was centered radially within the rest of the radial system. It is applied here

with an understanding that the resistance calculations may have some uncertainty in

relation to this.

As described in the introduction, models have been developed previously, but
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Figure 4.18: Ground heat exchanger borehole model grid

have either significant limitations or are too detailed to be useful in this project. The

context of this entire modeling work has been providing flexibility and robustness

while minimizing burden and detail. To continue this, the thermal network between

the grout, innermost radial soil cell, and pipes is modeled as linear one-dimensional

Cartesian based solely on the distance between the nodes, as shown in Figure 4.18.

In this Figure, points labeled “B” represent the radial centroid of each pipe material.

Point A represents the defined location for the grout cell node. In the orientation

shown in Figure 4.18, this point is centered horizontally in the borehole cross section,

and oriented vertically halfway between the radial center and the top borehole wall.

Although the last sentence used the terms horizontal and vertical, the one-dimensional

assumption used in the thermal network development blurs the model’s representation

of the physical system. This approach can also be presented as an adjusted set of

thermal properties, which is a common approach to modeling thermal networks of

complex geometry.

The simulation of the borehole cell itself is performed in a two-step procedure.
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The first step consists of simulating the radial soil and grout system. This is followed

by a flow-wise simulation of the pipes and fluids through the inlet and outlet legs of

the borehole. The actual operation is characterized in Algorithm 1.

Algorithm 1: Overall flow of solution algorithm for a single u-bend borehole

1 for c ∈ Segment.Cells do
2 Update Radial Soil and Grout
3 end
4 Prepare Borehole Inlet Temperature
5 for c ∈ Segment.InletLeg.Cells do
6 Update Inlet Leg Fluid and Pipe
7 Prepare Temperature for Next Cell

8 end
9 Pass Temperature From Inlet Leg to Outlet Leg

10 for c ∈ Segment.OutletLeg.Cells do
11 Update Outlet Leg Fluid and Pipe
12 Prepare Temperature for Next Cell

13 end

Algorithm 1 is a simplified overview. The radial soil and grout simulation call on

line 2 is summarized in Algorithm 2. Also from Algorithm 1, the operations in lines

6 and 11 are similar, and summarized in Algorithm 3.

Algorithm 2: Iteration loop for updating the grout and soil cells which interface
the borehole grout to the outer Cartesian system

1 while Not Converged do
2 Shift Relevant Temperatures For New Iteration
3 Simulate Radial-Cartesian Interface
4 Simulate Radial Soil Cells
5 Update Grout Temperature

6 end

The final model formulation utilized a significant assumption related to grout ther-

mal properties. It was found during experimental validation (next section, 4.4.1.3)

that using standard thermal properties with the thermal network set up here that

the effects of the grout thermal storage were significantly over-accounted. The grout

thermal mass was causing an unrealistic amount of lag in the fluid temperature dis-
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Algorithm 3: Iteration loop for updating the pipe and fluid temperatures for
a single u-bend borehole in a flow-wise fashion

1 while Not Converged do
2 Shift Relevant Temperatures For New Iteration
3 Simulate Pipe Cell
4 Update Fluid Temperature

5 end

tribution prediction. This is explained by a qualitative description of the thermal

phenomena occurring in the borehole. The thermal network assumes that the heat

leaving the pipes must traverse fully through the center of the borehole before prop-

agating out of the borehole wall. This causes a high amount of heat being stored in

the grout. However, the heat transfer is more complex than this, and a significant

portion of it will pass directly from the pipe wall to the borehole wall, bypassing

a majority of the grout. It was found that this thermal network model works well

with experimental data when the grout thermal storage is eliminated (by reducing

multiple orders of magnitude compared to other nearby features). The effects of this

assumption will be dependent on the grout thermal conductivity and pipe spacing,

but was able to match experimental data with an extremely high level of accuracy as

described in the following section. This conclusion is in accordance with assumptions

commonly used according to Claesson and Hellstrom (2011), as well as the a common

approach used in cases like these that utilize adjusted thermal properties to account

for various geometric attributes and multidimensional heat transfer.

4.4.1.3 Experimental Validation

The borehole model was validated using experimental data from a well-documented

borehole test (Beier et al., 2011). This document includes a detailed overview of

the experimental setup, and the article includes attachments that contain the exper-

imentally measured data in spreadsheet form. This is an ideal source for performing

experimental validation of this model.
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The experimental setup consisted of a rectangular sandbox containing a u-tube

borehole. Boreholes are most commonly installed in a vertical fashion, although

this experimental setup has the sandbox and borehole oriented horizontally. In this

way, the entire borehole can be contained inside a building to allow tight control of

the boundary conditions on the sandbox exterior, and provide a tightly-controlled

experimental data set.

Nearly all experimental parameters required for model validation were directly

provided by the article, leaving only a few to be estimated. A summary of the input

parameters used is provided as Table 4.2. The parameters which were not explicitly

available include the dynamic thermal properties (ρ, Cp) of the sand and grout. The

pipe dynamic thermal properties were not prescribed, but these values do not change

much under small temperature changes. The boundary and initialization temperature

can be estimated from plots in the paper, so this was done as an initial validation,

though an optimization was performed to optimize these temperatures.

In addition to these static values, the system heat addition and flow rate were

observed to be slightly dynamic during the initial experimental time. The data was

averaged hourly and the results are shown in Figure 4.19. Although the variation

is minimal in the long run, and overall average values may have provided suitable

results, using these transient values ensured that the simulation conditions matched

experimental conditions as much as possible, especially in the early periods where the

temperature is changing most rapidly.

Figure 4.20 shows the results of validation against a thermal response test using

normal axes. There are two result series shown on the plot. These results were

obtained after the approximation described previously was employed, in which the

thermal storage of the grout was eliminated from the simulation because of poor

model performance (grout resistance effects are still present).

The initial results (estimated temps) in Figure 4.20 were based on using estimated
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Figure 4.19: Ground heat exchanger borehole model dynamic validation input pa-
rameters

boundary and initial domain temperatures, as there is some uncertainty as to the

exact values utilized in the paper’s experimental work. Even with this estimation, the

results show a high degree of accuracy given the model’s simplicity and assumptions

in the thermal network. However, to determine if the model could perform better

with further accuracy in input parameters, an optimization was employed to vary

the domain initial and boundary temperatures and achieve a better match to the

thermal response test data. The results after the optimization were indeed better

than the estimated data, however either case is suitable given the uncertainty in

other parameters.

Figure 4.21 shows the same results, but using a log axis, to coincide with the

presentation of results in the paper. The results are the same in that the estimated

results are a very good match, and the optimized results push the results even closer.

4.4.1.4 Summary

The borehole model utilizes many simplifications which are in place due to the ul-

timate goals of broad usability and efficiency in input parameters and computation.
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Figure 4.20: Validation of borehole model using sandbox thermal response test data,
normal plot

Figure 4.21: Validation of borehole model using sandbox thermal response test data,
log plot
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Even with these simplifications, the model was able to produce a high degree of ac-

curacy through experimental validation of a thermal response test using a horizontal

borehole. During model development, the work by Claesson and Hellstrom (2011)

was described, but not utilized because the assumptions in the model seemed to be

too constraining given the transient nature of the rest of the model. After exper-

imental validation was achieved with a simplified thermal network that makes the

grout essentially steady state, it would now be interesting to test whether the multi-

ple resistance network would be as suitable a candidate as the currently implemented

version. Further work on this remains as possible future work.

4.4.2 Improved Fluid Natural Convection Model

During experimental validation of the ground heat exchanger model using foundation

heat exchanger data, the model performed well but showed some deviation during

times when the system was not running, and immediately after the system started

back up. It was thought that the effects may be due to the natural convection

correlation utilized during system “off-cycles.” To test this, the natural convection

coefficient was varied significantly during test runs and the model was found to be

insensitive to this parameter. As such this is not being studied further. The deviation

may simply be due to the assumptions built in to the model, including a lack of

moisture transport.

4.4.3 Enhanced Grid Sensitivity Study

A grid independence study was performed previously as described in section 4.3.3.3.

During this study some preliminary results were found regarding the importance of

certain grid parameters.

Further grid study was performed in an effort to clarify the sensitivity of the model

under certain grid conditions. Two model configurations were tested in this process:
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1. A two-pipe ground heat exchanger model, where two pipes are positioned beside

each other horizontally, with only the ground domain surrounding

2. A full foundation heat exchanger simulation model, with 6 pipes and interaction

with the basement zone

The same mesh parameters utilized in the previous study were reused in this

study:

• XY Mesh Density: A measure of the mesh density in the X and Y directions

(longitudinal to the pipe cross section)

• Axial Mesh Density: A measure of the axial discretization of the domain

• Radial Mesh Density: The number of cells to be utilized within the radial mesh,

between the pipe and the outer Cartesian domain

In the two-pipe ground model, the annual average heat pump entering fluid tem-

perature is used as a reference model output value. For the two-pipe model, there

was a distinct lack of sensitivity to the axial discretization, as shown in Figure 4.22.

In this figure, each horizontal set of data points represents a single combination of

radial/XY mesh values, which is then swept over each axial value. For very low grid

counts in the axial direction, there is some variation for each row, however after about

an axial count of 10 the results do not change significantly. The entire y-scale of the

plot is only 1.4 ◦C, so even at the initial variation, the change is much less than 0.1 ◦C.

Showing independence in the axial direction is important to ensure applicability

of the fluid cell governing equation in this discretized domain. This implies that the

axial grid count can be kept to a reasonable value without requiring enormously large

axial cell counts to achieve suitable grid independence.

The next test is for the XY mesh density parameter. The results are presented in

Figure 4.23 in a similar fashion to the axial mesh.

The XY results in Figure 4.23 reveal that for any combination of axial/radial

grid parameters, the grid becomes independent of the XY mesh density with a value
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Figure 4.22: Further grid sensitivity study, “two pipe model” results as a function of
axial mesh count

Figure 4.23: Further grid sensitivity study, “two pipe model” results as a function of
XY mesh density
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of 7, as the results at 10 are very close to the results at 7. For a two-pipe model

such as this, the resulting Cartesian mesh at a given axial cross section will contain

around 315 cells, which makes for a reasonable amount of computational burden for

simulating these systems.

The final mesh parameter to be swept in this study is the radial mesh count.

This value defines the number of radial cells to be utilized as an interface to the

Cartesian domain. With a higher radial mesh count, the grid density will be much

higher around the pipe, and theoretically able to capture higher order gradients than

with fewer cells, which would tend to blur the gradients. In this test, the model was

only slightly sensitive to the radial mesh density around the pipe up until a value of

about 20. Beyond 20, the cells became extremely small, and the results began to drift

away from a converged point. This implies that a numerical artifact, likely related to

truncation error compounding in such cases.

In the foundation heat exchanger case, even with a small mesh count in the X-Y

direction, the domain contained a high number of cells, just due to the mesh partitions

(pipes). Because of this, the XY parameter was an insignificant parameter. The

radial mesh was also found to be insignificant similar to the two-pipe configuration

with reasonable number of radial cells. However, this test revealed an instability

present in the zone interaction. For axial mesh counts less than around 30, the model

produces suitable results and is not highly sensitive to the parameter. However, above

this amount, the model begins to show instability with unrealistic cell temperatures

and interaction with the basement zone. This is likely a combination of two coupled

effects:

• The coupling between the ground domain and the zone is managed by a special-

ized surface outside boundary condition, called an other-side-conditions model

in EnergyPlus. This allows a boundary temperature and convection coefficient

to be specified for any surface. For this model, since the ground domain is
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assumed to be in direct contact with the surface, the convection coefficient is

set to a very high value in order to approximate a fixed surface temperature.

In most simulation cases this appears to be suitable, however the artificial con-

vection coefficient appears to break down as the cell count becomes larger, cell

sizes shrink, and the relative error increases.

• This effect may be more pronounced in cases with large cell counts because of

computational rounding error within the program. Using an artificially large

value of convection coefficient may be causing the results to become truncated,

and this is compounded as the number of cell calculations increases.

The solution to this problem involves a closer look at the coupling between the

two different model domains, and an improved communication mechanism at this

interface. This is left as future work for this model. In the end, this grid sensitivity

study resulted in a single conclusion:

Each mesh configuration requires an independent grid independence study.

While the resulting mesh has been coarse and still provided satisfactory results

under experimental validation studies, the dependence on individual mesh parameters

may vary between configurations.

4.5 Conclusions

A generalized horizontal ground heat exchanger model has been developed which

integrates systems within a whole building energy simulation environment. The model

uses a coarse grid three-dimensional Cartesian coordinate system as the basis for

a numerical solution, with the near pipe regions meshed using a secondary radial

coordinate system. This approach provides a refined grid in the near pipe region, and

is generalized to allow any number of pipes to be placed in the domain. Fluid flow

in the pipe is simulated in a flow-wise fashion as it circuits through the domain to

capture interference effects of multiple pipes and flow direction.
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The model is integrated with the zone heat balance through a boundary condition

at the zone exterior surface. The model is also coupled to the hydronic system

simulation through the fluid inlet and outlet of each fluid circuit in the model. These

integrations allow the same mass of ground to interact thermally with the zone and the

ground heat exchanger that may be serving the zone. This allows for studies of near-

zone heat exchangers with improved accuracy over decoupled approaches. The model

provides suitable accuracy with a coarse grid when validating against experimental

measurements. Heat exchanger exiting fluid temperature is predicted with a mean

bias error of 1.3 ◦C (2.3 ◦F). Average annual basement wall heat flux is predicted to

1.1 W/m2 (0.35 btu/hft2).

In the last stage of this research work, further work was performed including the

development of an experimentally validated, simplified two-pipe borehole model, and

investigations of fluid natural convection effects and grid sensitivity.

A development snapshot of the source code for this simulation model is provided in

the appendix of this document. This code is for a standalone version of the model, not

the version implemented in EnergyPlus. The EnergyPlus source code has, at the time

of this writing, been released under an open source license, so the full EnergyPlus-

coupled code is available from appropriate sources. However this standalone code

may be used as a simpler test and development environment as it contains much less

complexity than the EnergyPlus version.
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CHAPTER 5

Summary

5.1 General Summary

The ultimate goal of this work has been to develop a new ground heat exchanger model

that is capable of producing sufficient accuracy in applications where inter-domain

effects are important. These effects include the heat transfer interaction between a

zone heat balance and the ground, and also the interaction between the ground and

a full central plant simulation. The ground heat exchanger model was developed and

validated against a number of conditions, producing quality results even with a very

coarse grid.

The ground heat exchanger model was implemented as a component model for a

central plant simulation engine inside EnergyPlus. To ensure the central plant was

sufficiently robust and accurate to simulate the ground heat exchanger in a number

of applications, the central plant required a new solution algorithm. A new loop so-

lution algorithm was proposed and implemented inside EnergyPlus which improves

the reliability and flexibility in simulating not only ground heat exchanger configura-

tions, but also chilled water loops, hot water loops, condenser loops, and any number

of other diverse configurations.

To ensure that the entire system was suitable for as many applications as possible,

an investigation into the effects of transport delay was performed. Experimental

data was measured to support a modeling study that showed that different modeling

techniques can produce significantly different system responses. Bounding studies

implemented in a full whole building energy simulation implied that whole building
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energy effects are not sensitive to a particular transport model, though the effect

of transport is expected to be significant in loops with more detailed temperature-

dependent component models, than in idealized simulation loops.

5.2 Conclusions

A number of conclusions have been reached during this work:

1. A flexible, robust central plant simulation algorithm, suitable for many in-

practice and novel component configurations, can be obtained without requiring

a the computational burden and high level of input specification of a detailed

pressure network solution.

2. There is an abstraction process required to properly model hydronic systems

with this solution algorithm. This process requires analysis of the intention

of the loop components and controls; it is not obvious from the loop topology

alone.

3. The effect of transport delay on whole building energy use is less dependent on

the transport model itself and more dependent on the remaining loop configu-

ration. Downstream components on the loop tend to blur the effects of a delay

component. This effect is amplified on loops that consist of predominantly ide-

alized components. The more sensitive a loop is to the temperature variation,

the more sensitive it will be to the effects of a transport delay object.

4. The ground heat transfer phenomena in a ground heat exchanger model can be

predicted with a suitable level of accuracy using a generally coarse major grid,

but with a refined grid in the regions of highest activity. For this model, that

includes both a refined major grid structure, as well as a secondary coordinate

system established in regions near heat exchanger pipes.

5. Surface heat balance effects are a critical part of accurately modeling shallow

ground heat exchangers, with a significant sensitivity on the evapotranspiration
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at the surface.

6. Coupling a ground heat exchanger model with a zone heat balance calculation

can simultaneously predict the heat transfer rate between the zone, ground,

and fluid. This alleviates the iteration required to simulate this condition using

multiple decoupled models as in previous studies (Cullin et al., 2012).

5.3 Future Work

The following sections describe possible paths for further research studies in each of

the three core topics of this work.

5.3.1 EnergyPlus Central Plant Simulation

The EnergyPlus central plant simulations were improved with a new solution algo-

rithm. With this change in place, there is an opportunity for pursuing improved

performance of advanced configurations.

5.3.1.1 Simulation Order

The dependence between simulation loops and half-loops is not easily identified for

the generalized topology and coupling available in the improved solution algorithm.

Although simple dependencies can be inferred based on component types and con-

nections, a more robust and widely applicable method should be investigated. One

possibility is to use graph theory to create a map of the simulation model, and find

an optimal set of paths (simulation order). This alone could have the benefit of min-

imizing computation time, which is significant at this nested point within the whole

building energy simulation environment. An advanced approach could also identify

independent simulation paths, and simulate these paths concurrently, providing a fur-

ther benefit. This would require much analysis, as threading this procedure introduces

the possibility of multiple processes accessing and modifying shared data.
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5.3.1.2 Central Plant Design

The central plant simulation model created in this work utilizes an algorithmic (non

pressure-based) flow-solution to provide a suitable prediction of energy use for central

plants. This limits the possibility to perform design calculations, such as optimal pipe

diameter in a piping system. Further research could extend the model, including the

pressure calculations, or implement a full flow network solution to provide capabilities

such as this. Creating a piping system design focus within the context of a whole

building energy simulation program would be a novel and useful research task.

5.3.1.3 Unifying Solution Algorithms

The level of integration between simulation systems inside the whole building energy

simulation program EnergyPlus could be improved. The air system and hydronic

system, while performing similar tasks and sharing similar topology rules, utilize

two completely different simulation models. Coupling these could improve not only

developer maintenance burden, but drastically improve the ability to advance the

program by unifying the simulation methodology.

5.3.2 Transport Delay

The transport delay work included both experimental and modeling aspects. There

are advancements available for improving delay modeling capabilities.

5.3.2.1 A Blended Flow Model

One result of the transport delay study in this work demonstrates that a blended flow

model (using results from multiple models together) provides suitable results against

one experimental data set. Further modeling work could include a robust, widely

applicable, blended flow regime model, somewhere between well-mixed and plug-flow.

One issue that may be difficult is describing system-specific attributes that induce
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mixing, though with a large study this could be evaluated into the weighting factors

between methods.

5.3.2.2 Evaluating Immediate Temperature Response Effects

Transport delay experimental results were found to be in between the plug flow and

well-mixed models, with the temperature response of each model differing signifi-

cantly, especially during the initial start-up phase. At long time-scales, these results

tend to become blurred into an overall energy impact, however if accuracy in the

initial time is of importance, the selection of transport delay model is important.

Quantifying these effects on specific applications where the initial time is important

would suit as a future study.

5.3.2.3 Further Investigation on Optimal Node Discretization

The Hanby et al. (2002) model was described in section 3.2.4, with an emphasis on

an issue related to the assertion of a single optimal node count value. This could be

investigated further by setting up simulation models using experimental data mea-

sured during this study. At each experimental configuration, the discretization and

time step could vary to determine if a different optimal point is attained, and if this

optimal point could be predicted.

5.3.3 Ground Heat Exchanger Model

The ground heat exchanger model developed here coupled the ground with the zone

heat balance calculations, and with the hydronic system simulation algorithms. High

quality results were obtained, even with a coarse grid and low computational burden.

Further work could be performed to improve the model results further and also to

improve the usability of the model into different applications.
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5.3.3.1 Investigating Far-field Boundary Specification

During the estimation of ground properties to be used in model calculations, the model

was never able to fully match the undisturbed ground temperature at all measured

depths. It is possible that this is because the far-field temperature correlation utilized

did not fully capture the ground temperature variation. Future work could include

implementing a far-field ground temperature boundary condition that captures more

phenomena.

5.3.3.2 Corner Effects

The ground heat exchanger model developed here uses a uniform cross section, which

is extended axially in the domain. This limits the applicability of the model, and

further additions could include either:

• development of an approximation to be employed in the model that captures

“corner” and other geometric variation effects, or

• modification of the model to actually include diverse geometries

However, additions such as these could result in actually reducing the model

usability due to the increased computational and input burdens.

5.3.3.3 Generalized Applications

The generalized placement of pipes in the domain, along with the flexible integration

characteristics, make this model especially viable for implementing capabilities for

simulation additional heat exchanger applications.

Earth Tube An earth tube (Lee and Strand, 2008) is a duct buried in the ground

which is used to pre-treat outside air being supplied to a zone. This is basically no

different from a buried pipe with water or other fluid. This is an easily identified
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possibility for direct use of the model, as it would only require a change in working

fluid and convection correlation.

Vertical Ground Heat Exchanger Vertical boreholes are used to interact pre-

dominantly with the deep ground nearly constant conditions. Over the length of

the borehole the conditions will vary, as the shallow section encounters some effects

from the ground surface, and the deeper sections encounter the thermal gradient in

the ground and the possibility of end effects at the bottom of the tube. These are

commonly used in groups of heat exchangers, not a single heat exchanger. During

the final phase of this research work, a borehole model was implemented. To com-

plete a vertical borehole field simulation using this ground heat exchanger model, the

boundary condition specification must be adjusted to allow for the change in orienta-

tion and also to capture the vertical variation in boundary temperature and thermal

properties.
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APPENDIX A

EnergyPlus Input Specification for Model Abstraction Case A

Listing A.1: Input Data File (IDF) Listing
1
2 Version ,7.2;

3
4 Building ,

5 Plant Load Profile Example , !- Name

6 0.0, !- North Axis {deg}

7 Suburbs , !- Terrain

8 0.04, !- Loads Convergence Tolerance Value

9 0.04, !- Temperature Convergence Tolerance Value {deltaC}

10 FullInteriorAndExterior , !- Solar Distribution

11 25, !- Maximum Number of Warmup Days

12 6; !- Minimum Number of Warmup Days

13
14 Timestep ,6;

15
16 GlobalGeometryRules ,

17 UpperLeftCorner , !- Starting Vertex Position

18 CounterClockWise , !- Vertex Entry Direction

19 Relative; !- Coordinate System

20
21 Site:Location ,

22 Tulsa , !- Location Name

23 36.20, !- Latitude {N+ S-}

24 -95.88, !- Longitude {W- E+}

25 -6.00, !- Time Zone Relative to GMT {GMT +/-}

26 198.00; !- Elevation {m}

27
28 RunPeriod ,

29 , !- Name

30 7, !- Begin Month

31 1, !- Begin Day of Month

32 7, !- End Month

33 1, !- End Day of Month

34 Tuesday , !- Day of Week for Start Day

35 Yes , !- Use Weather File Holidays and Special Days

36 Yes , !- Use Weather File Daylight Saving Period

37 No, !- Apply Weekend Holiday Rule

38 Yes , !- Use Weather File Rain Indicators

39 Yes; !- Use Weather File Snow Indicators

40
41 SimulationControl ,

42 No , !- Do Zone Sizing Calculation

43 No , !- Do System Sizing Calculation

44 No , !- Do Plant Sizing Calculation

45 No, !- Run Simulation for Sizing Periods

46 Yes; !- Run Simulation for Weather File Run Periods

47
48 PlantLoop ,

49 Main Loop , !- Name

50 WATER , !- Fluid Type

51 , !- User Defined Fluid Type

52 Main Loop Operation , !- Plant Equipment Operation Scheme Name

53 Supply Outlet Node , !- Loop Temperature Setpoint Node Name

54 100, !- Maximum Loop Temperature {C}

55 3, !- Minimum Loop Temperature {C}

56 0.003, !- Maximum Loop Flow Rate {m3/s}

57 0, !- Minimum Loop Flow Rate {m3/s}

58 autocalculate , !- Plant Loop Volume {m3}

59 Supply Inlet Node , !- Plant Side Inlet Node Name

60 Supply Outlet Node , !- Plant Side Outlet Node Name

61 Supply Branches , !- Plant Side Branch List Name

62 Supply Connectors , !- Plant Side Connector List Name

63 Demand Inlet Node , !- Demand Side Inlet Node Name

64 Demand Outlet Node , !- Demand Side Outlet Node Name

65 Demand Branches , !- Demand Side Branch List Name

66 Demand Connectors , !- Demand Side Connector List Name

67 Sequential; !OPTIMAL; !- Load Distribution Scheme

68
69 SetpointManager:Scheduled ,

70 Main Loop Setpoint Manager , !- Name

71 Temperature , !- Control Variable

72 Main Loop Temp Sch , !- Schedule Name

73 Main Loop Setpoint Node List; !- Setpoint Node or NodeList Name
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74
75 NodeList ,

76 Main Loop Setpoint Node List , !- Name

77 Supply Outlet Node , !- Node 1 Name

78 Chiller1 Outlet Node , !- Node 2 Name

79 Chiller2 Outlet Node; !- Node 3 Name

80
81 PlantEquipmentOperationSchemes ,

82 Main Loop Operation , !- Name

83 PlantEquipmentOperation:ComponentSetpoint , !- Control Scheme 1 Object Type

84 ComponentSetpointChillers , !- Control Scheme 1 Name

85 AlwaysOnSchedule; !- Control Scheme 1 Schedule Name

86
87 PlantEquipmentOperation:ComponentSetpoint ,

88 ComponentSetpointChillers , !- Name

89 Chiller:ConstantCOP , !- Equipment 1 Object Type

90 Chiller1 , !- Equipment 1 Name

91 Chiller1 Inlet Node , !- Demand Calculation 1 Node Name

92 Chiller1 Outlet Node , !- Setpoint 1 Node Name

93 0.0015 , !- Component 1 Flow Rate

94 Cooling , !- Operation 1 Type

95 Chiller:ConstantCOP , !- Equipment 2 Object Type

96 Chiller2 , !- Equipment 2 Name

97 Chiller2 Inlet Node , !- Demand Calculation 2 Node Name

98 Chiller2 Outlet Node , !- Setpoint 2 Node Name

99 0.0015 , !- Component 2 Flow Rate

100 Cooling; !- Operation 2 Type

101
102 PlantEquipmentList ,

103 Chiller Plant , !- Name

104 Chiller:ConstantCOP , !- Equipment 1 Object Type

105 Chiller1 , !- Equipment 1 Name

106 Chiller:ConstantCOP , !- Equipment 1 Object Type

107 Chiller2; !- Equipment 1 Name

108
109 BranchList ,

110 Supply Branches , !- Name

111 Supply Inlet Branch , !- Branch 1 Name

112 Chiller1 Branch , !- Branch 2 Name

113 Chiller2 Branch , !- Branch 3 Name

114 Supply Outlet Branch; !- Branch 4 Name

115
116 ConnectorList ,

117 Supply Connectors , !- Name

118 Connector:Splitter , !- Connector 1 Object Type

119 Supply Splitter , !- Connector 1 Name

120 Connector:Mixer , !- Connector 2 Object Type

121 Supply Mixer; !- Connector 2 Name

122
123 Connector:Splitter ,

124 Supply Splitter , !- Name

125 Supply Inlet Branch , !- Inlet Branch Name

126 Chiller1 Branch , !- Branch 2 Name

127 Chiller2 Branch; !- Branch 3 Name

128
129 Connector:Mixer ,

130 Supply Mixer , !- Name

131 Supply Outlet Branch , !- Outlet Branch Name

132 Chiller1 Branch , !- Branch 2 Name

133 Chiller2 Branch; !- Branch 3 Name

134
135 Branch ,

136 Supply Inlet Branch , !- Name

137 0, !- Maximum Flow Rate {m3/s}

138 , !- Pressure Drop Curve Name

139 Pipe:Adiabatic , !- Component 1 Object Type

140 Supply Inlet Pipe , !- Component 1 Name

141 Supply Inlet Node , !- Component 1 Inlet Node Name

142 Supply Inlet Pipe Outlet Node , !- Component 1 Outlet Node Name

143 PASSIVE; !- Component 1 Branch Control Type

144
145 Pipe:Adiabatic ,

146 Supply Inlet Pipe , !- Name

147 Supply Inlet Node , !- Inlet Node Name

148 Supply Inlet Pipe Outlet Node; !- Outlet Node Name

149
150 Branch ,

151 Chiller1 Branch , !- Name

152 0, !- Maximum Flow Rate {m3/s}

153 , !- Pressure Drop Curve Name

154 Pump:ConstantSpeed , !- Component 1 Object Type

155 Pump1 , !- Component 1 Name

156 Pump1 Inlet Node , !- Component 1 Inlet Node Name

157 Chiller1 Inlet Node , !- Component 1 Outlet Node Name

158 SeriesActive , !- Component 1 Branch Control Type

159 Chiller:ConstantCOP , !- Component 1 Object Type

160 Chiller1 , !- Component 1 Name

161 Chiller1 Inlet Node , !- Component 1 Inlet Node Name

162 Chiller1 Outlet Node , !- Component 1 Outlet Node Name

163 SeriesActive; !- Component 1 Branch Control Type

164
165 Pump:ConstantSpeed ,

166 Pump1 , !- Name
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167 Pump1 Inlet Node , !- Inlet Node Name

168 Chiller1 Inlet Node , !- Outlet Node Name

169 0.0015 , !- Rated Flow Rate

170 10000, !- Rated Pump Head

171 25, !- Rated Power Consumption

172 , !- Motor Efficiency

173 , !- Fraction of Motor Inefficiencies to Fluid Stream

174 Intermittent; !- Pump Control Type

175
176 Chiller:ConstantCOP ,

177 Chiller1 , !- Name

178 20000, !- Nominal Capacity

179 3.5, !- Nominal COP

180 0.0015 , !- Design Chilled Water Flow Rate

181 , !- Design Condenser Water Flow Rate

182 Chiller1 Inlet Node , !- Chilled Water Inlet Node Name

183 Chiller1 Outlet Node , !- Chilled Water Outlet Node Name

184 Chiller2 Condenser Inlet Node , !- Condenser Inlet Node Name

185 , !- Condenser Outlet Node Name

186 AirCooled , !- Condenser Type

187 VariableFlow , !- Chiller Flow Mode

188 1.0; !- Sizing Factor

189
190 OutdoorAir:Node ,Chiller1 Condenser Inlet Node;

191
192 Branch ,

193 Chiller2 Branch , !- Name

194 0, !- Maximum Flow Rate {m3/s}

195 , !- Pressure Drop Curve Name

196 Pump:ConstantSpeed , !- Component 1 Object Type

197 Pump2 , !- Component 1 Name

198 Pump2 Inlet Node , !- Component 1 Inlet Node Name

199 Chiller2 Inlet Node , !- Component 1 Outlet Node Name

200 SeriesActive , !- Component 1 Branch Control Type

201 Chiller:ConstantCOP , !- Component 1 Object Type

202 Chiller2 , !- Component 1 Name

203 Chiller2 Inlet Node , !- Component 1 Inlet Node Name

204 Chiller2 Outlet Node , !- Component 1 Outlet Node Name

205 SeriesActive; !- Component 1 Branch Control Type

206
207 Pump:ConstantSpeed ,

208 Pump2 , !- Name

209 Pump2 Inlet Node , !- Inlet Node Name

210 Chiller2 Inlet Node , !- Outlet Node Name

211 0.0015 , !- Rated Flow Rate

212 10000, !- Rated Pump Head

213 25, !- Rated Power Consumption

214 , !- Motor Efficiency

215 , !- Fraction of Motor Inefficiencies to Fluid Stream

216 Intermittent; !- Pump Control Type

217
218 Chiller:ConstantCOP ,

219 Chiller2 , !- Name

220 20000, !- Nominal Capacity

221 3.5, !- Nominal COP

222 0.0015 , !- Design Chilled Water Flow Rate

223 , !- Design Condenser Water Flow Rate

224 Chiller2 Inlet Node , !- Chilled Water Inlet Node Name

225 Chiller2 Outlet Node , !- Chilled Water Outlet Node Name

226 Chiller2 Condenser Inlet Node , !- Condenser Inlet Node Name

227 , !- Condenser Outlet Node Name

228 AirCooled , !- Condenser Type

229 VariableFlow , !- Chiller Flow Mode

230 1.0; !- Sizing Factor

231
232 OutdoorAir:Node ,Chiller2 Condenser Inlet Node;

233
234 Branch ,

235 Supply Outlet Branch , !- Name

236 0, !- Maximum Flow Rate {m3/s}

237 , !- Pressure Drop Curve Name

238 Pipe:Adiabatic , !- Component 1 Object Type

239 Supply Outlet Pipe , !- Component 1 Name

240 Supply Outlet Pipe Inlet Node , !- Component 1 Inlet Node Name

241 Supply Outlet Node , !- Component 1 Outlet Node Name

242 PASSIVE; !- Component 1 Branch Control Type

243
244 Pipe:Adiabatic ,

245 Supply Outlet Pipe , !- Name

246 Supply Outlet Pipe Inlet Node ,!- Inlet Node Name

247 Supply Outlet Node; !- Outlet Node Name

248
249 BranchList ,

250 Demand Branches , !- Name

251 Demand Inlet Branch , !- Branch 1 Name

252 Load Profile Branch 1, !- Branch 2 Name

253 Load Profile Branch 2, !- Branch 3 Name

254 Bypass Branch , !- Branch 4 Name

255 Demand Outlet Branch; !- Branch 5 Name

256
257 ConnectorList ,

258 Demand Connectors , !- Name

259 Connector:Splitter , !- Connector 1 Object Type
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260 Demand Splitter , !- Connector 1 Name

261 Connector:Mixer , !- Connector 2 Object Type

262 Demand Mixer; !- Connector 2 Name

263
264 Connector:Splitter ,

265 Demand Splitter , !- Name

266 Demand Inlet Branch , !- Inlet Branch Name

267 Load Profile Branch 1, !- Outlet Branch 1 Name

268 Load Profile Branch 2, !- Outlet Branch 2 Name

269 Bypass Branch; !- Outlet Branch 3 Name

270
271 Connector:Mixer ,

272 Demand Mixer , !- Name

273 Demand Outlet Branch , !- Outlet Branch Name

274 Load Profile Branch 1, !- Inlet Branch 1 Name

275 Load Profile Branch 2, !- Inlet Branch 2 Name

276 Bypass Branch; !- Inlet Branch 3 Name

277
278 Branch ,

279 Demand Inlet Branch , !- Name

280 0, !- Maximum Flow Rate {m3/s}

281 , !- Pressure Drop Curve Name

282 Pipe:Adiabatic , !- Component 1 Object Type

283 Demand Inlet Pipe , !- Component 1 Name

284 Demand Inlet Node , !- Component 1 Inlet Node Name

285 Demand Pipe -Load Profile Node , !- Component 1 Outlet Node Name

286 PASSIVE; !- Component 1 Branch Control Type

287
288 Pipe:Adiabatic ,

289 Demand Inlet Pipe , !- Name

290 Demand Inlet Node , !- Inlet Node Name

291 Demand Pipe -Load Profile Node; !- Outlet Node Name

292
293 Branch ,

294 Load Profile Branch 1, !- Name

295 0, !- Maximum Flow Rate {m3/s}

296 , !- Pressure Drop Curve Name

297 LoadProfile:Plant , !- Component 1 Object Type

298 Load Profile 1, !- Component 1 Name

299 Demand Load Profile 1 Inlet Node , !- Component 1 Inlet Node Name

300 Demand Load Profile 1 Outlet Node , !- Component 1 Outlet Node Name

301 ACTIVE; !- Component 1 Branch Control Type

302
303 LoadProfile:Plant ,

304 Load Profile 1, !- Name

305 Demand Load Profile 1 Inlet Node , !- Inlet Node Name

306 Demand Load Profile 1 Outlet Node , !- Outlet Node Name

307 Load Profile 1 Load Schedule , !- Load Schedule Name

308 0.0015 , !- Peak Flow Rate {m3/s}

309 Load Profile 1 Flow Frac Schedule; !- Flow Rate Fraction Schedule Name

310
311 Schedule:Compact ,

312 Load Profile 1 Load Schedule , !- Name

313 Any Number , !- Schedule Type Limits Name

314 THROUGH: 12/31 , !- Field 1

315 FOR: AllDays , !- Field 2

316 UNTIL: 7:00,0.0 , !- Field 3

317 UNTIL: 9:00,-6000, !- Field 5

318 UNTIL: 12:00 , -10000 , !- Field 7

319 UNTIL: 18:00 , -16000 , !- Field 9

320 UNTIL: 20:00,-9000, !- Field 11

321 UNTIL: 24:00 ,0.0; !- Field 13

322
323 Schedule:Compact ,

324 Load Profile 1 Flow Frac Schedule , !- Name

325 Any Number , !- Schedule Type Limits Name

326 THROUGH: 12/31 , !- Field 1

327 FOR: AllDays , !- Field 2

328 UNTIL: 7:00,0.0 , !- Field 3

329 UNTIL: 9:00,0.3 , !- Field 5

330 UNTIL: 12:00 ,0.5 , !- Field 7

331 UNTIL: 18:00 ,1.0 , !- Field 9

332 UNTIL: 20:00 ,0.4 , !- Field 11

333 UNTIL: 24:00 ,0.0; !- Field 13

334
335 Branch ,

336 Load Profile Branch 2, !- Name

337 0, !- Maximum Flow Rate {m3/s}

338 , !- Pressure Drop Curve Name

339 LoadProfile:Plant , !- Component 1 Object Type

340 Load Profile 2, !- Component 1 Name

341 Demand Load Profile 2 Inlet Node , !- Component 1 Inlet Node Name

342 Demand Load Profile 2 Outlet Node , !- Component 1 Outlet Node Name

343 ACTIVE; !- Component 1 Branch Control Type

344
345 LoadProfile:Plant ,

346 Load Profile 2, !- Name

347 Demand Load Profile 2 Inlet Node , !- Inlet Node Name

348 Demand Load Profile 2 Outlet Node , !- Outlet Node Name

349 Load Profile 2 Load Schedule , !- Load Schedule Name

350 0.0015 , !- Peak Flow Rate {m3/s}

351 Load Profile 2 Flow Frac Schedule; !- Flow Rate Fraction Schedule Name

352
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353 Schedule:Compact ,

354 Load Profile 2 Load Schedule , !- Name

355 Any Number , !- Schedule Type Limits Name

356 THROUGH: 12/31, !- Field 1

357 FOR: AllDays , !- Field 2

358 UNTIL: 7:00,0.0 , !- Field 3

359 UNTIL: 9:00,0.0 , !- Field 5

360 UNTIL: 12:00 , -10000 , !- Field 7

361 UNTIL: 18:00 , -16000 , !- Field 9

362 UNTIL: 20:00,-9000, !- Field 11

363 UNTIL: 24:00 ,0.0; !- Field 13

364
365 Schedule:Compact ,

366 Load Profile 2 Flow Frac Schedule , !- Name

367 Any Number , !- Schedule Type Limits Name

368 THROUGH: 12/31 , !- Field 1

369 FOR: AllDays , !- Field 2

370 UNTIL: 7:00,0.0 , !- Field 3

371 UNTIL: 9:00,0.0 , !- Field 5

372 UNTIL: 12:00 ,0.5 , !- Field 7

373 UNTIL: 18:00 ,1.0 , !- Field 9

374 UNTIL: 20:00 ,0.4 , !- Field 11

375 UNTIL: 24:00 ,0.0; !- Field 13

376
377 Branch ,

378 Bypass Branch , !- Name

379 0, !- Maximum Flow Rate {m3/s}

380 , !- Pressure Drop Curve Name

381 Pipe:Adiabatic , !- Component 1 Object Type

382 Bypass Pipe , !- Component 1 Name

383 Bypass Inlet Node , !- Component 1 Inlet Node Name

384 Bypass Outlet Node , !- Component 1 Outlet Node Name

385 PASSIVE; !- Component 1 Branch Control Type

386
387 Pipe:Adiabatic ,

388 Bypass Pipe , !- Component 1 Name

389 Bypass Inlet Node , !- Component 1 Inlet Node Name

390 Bypass Outlet Node; !- Component 1 Outlet Node Name

391
392 Branch ,

393 Demand Outlet Branch , !- Name

394 0, !- Maximum Flow Rate {m3/s}

395 , !- Pressure Drop Curve Name

396 Pipe:Adiabatic , !- Component 1 Object Type

397 Demand Outlet Pipe , !- Component 1 Name

398 Demand Load Profile -Pipe Node , !- Component 1 Inlet Node Name

399 Demand Outlet Node , !- Component 1 Outlet Node Name

400 PASSIVE; !- Component 1 Branch Control Type

401
402 Pipe:Adiabatic ,

403 Demand Outlet Pipe , !- Name

404 Demand Load Profile -Pipe Node , !- Inlet Node Name

405 Demand Outlet Node; !- Outlet Node Name

406
407 ScheduleTypeLimits ,

408 Any Number; !- Name

409
410 ScheduleTypeLimits ,

411 On/Off , !- Name

412 0, !- Lower Limit Value

413 1, !- Upper Limit Value

414 DISCRETE; !- Numeric Type

415
416 Schedule:Compact ,

417 Main Loop Temp Sch , !- Name

418 Any Number , !- Schedule Type Limits Name

419 THROUGH: 12/31 , !- Field 1

420 FOR: AllDays , !- Field 2

421 UNTIL: 24:00 ,7.22; !- Field 3

422
423 Schedule:Compact ,

424 AlwaysOnSchedule , !- Name

425 On/Off , !- Schedule Type Limits Name

426 THROUGH: 12/31 , !- Field 1

427 FOR: AllDays , !- Field 2

428 UNTIL: 24:00 ,1; !- Field 3

429
430 Output:VariableDictionary ,Regular;

431
432 Output:Variable ,*,System Node Temp ,Timestep;

433
434 Output:Variable ,*,System Node MassFlowRate ,Timestep;

435
436 Output:Variable ,*,Chiller Evap Heat Trans Rate ,Timestep;

437
438 Output:Variable ,*,Schedule Value ,Timestep;

439
440 Output:Variable ,*,System Node MassFlowRateRequest ,Timestep;

441
442 Output:Variable ,*,Plant Load Profile Mass Flow Rate ,Timestep;

443
444 Output:Variable ,*,Plant Load Profile Heat Transfer Rate ,Timestep;

445
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446 Output:Variable ,*,Plant Load Profile Heat Transfer Energy ,Timestep;

447
448 Output:Meter:MeterFileOnly ,Electricity:Facility ,monthly;

449
450 Output:Meter:MeterFileOnly ,Electricity:Plant ,monthly;

451
452 Output:Meter:MeterFileOnly ,Electricity:Facility ,runperiod;

453
454 Output:Meter:MeterFileOnly ,Electricity:Plant ,runperiod;

455
456 Output:Diagnostics ,DisplayAdvancedReportVariables;
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APPENDIX B

Standalone Ground Heat Exchanger Model Source

Listing B.1: Standalone Ground Heat Exchanger Model Source: Manager
! This work authored by Edwin Lee , at Oklahoma State University

! ___ _ ____ _ _

! / _ \| | __/ ___ || |_ __ _| |_ ___

!| | | | |/ /\ ___ \| __/ _‘ | __/ _ \

!| |_| | < ___) | || (_| | || __/

! \___ /|_|\_\| ____/ \__\__ ,_|\__\___|

PROGRAM RunPiechowski

USE PiechowskiInputManager

USE PiechowskiSimulationManager

IMPLICIT NONE

! Simulation parameters

REAL(r64), PARAMETER :: TimeStepSize = 900.0 d0

INTEGER , PARAMETER :: NumTimeSteps = 8760*4

INTEGER , PARAMETER :: OutputInterval = 250

INTEGER , PARAMETER :: FieldReportIncrement = 100

LOGICAL , PARAMETER :: DoingUGTValidation = .TRUE.

LOGICAL , PARAMETER :: WriteTempProfiles = .FALSE.

!File unit numbers

INTEGER , PARAMETER :: TempUnitNum = 29

INTEGER , PARAMETER :: SimConditionsUnitNum = 30

INTEGER , PARAMETER :: CircuitUnitNum = 31

INTEGER , PARAMETER :: CircuitProfilesUnitNum = 32

INTEGER , PARAMETER :: GroundTemperaturesUnitNum = 33

!Flags , reporting values

INTEGER :: TimeStepIndex

INTEGER :: NumIterationsUsed

LOGICAL :: ErrorsFound

INTEGER , DIMENSION (8) :: DateTimeVals

LOGICAL :: exists

!Ground temperature (UGT Validation ) variables

REAL(r64), ALLOCATABLE , DIMENSION (:) :: GroundTempData !ground depths to be calculated for verification at

depths 1’ to 6’

INTEGER :: NumTempsToReport

INTEGER :: CellAverage_Start

INTEGER :: CellAverage_Step

INTEGER :: CalcInterval

INTEGER :: XValue

INTEGER :: ZValue

INTEGER :: DepthIndex

INTEGER :: SubIndex

INTEGER :: SubSubIndex

INTEGER :: SubSubCounter

INTEGER :: StartingY

INTEGER :: EndingY

!Counter -indeces

INTEGER :: Y, Z, I, X

!Character formats

CHARACTER(LEN =20) :: c_size !x- direction cell count for easy format specification

CHARACTER(LEN =20) :: fmt_domain !format statement of c_size real values

CHARACTER(LEN =20) :: fmt_domain2 !format statement of c_size integers

CHARACTER(LEN =20) :: fmt_domain3 !format statement of c_size alpha strings

CHARACTER(LEN =20) :: fmt_circuit !similar to domain except # is the number of circuit cells

CHARACTER(LEN =20) :: fmt_circuit2 !similar to domain except # is the number of circuit cells

CHARACTER(LEN =60) :: GroundTemperaturesFormat

CHARACTER(LEN =1000) :: GroundTemperaturesHeader

CHARACTER(LEN =36) :: TimeStepFileName

!Cell type strings for nicer reporting

CHARACTER(len=6), PARAMETER , DIMENSION (-10:-1) :: celltypenames = (/’ba_cut ’, ’ba_cor ’, ’ba_flo ’, ’ba_wal ’, ’

bn_adb ’, ’bn_far ’, ’bn_sur ’, ’gfield ’, ’_pipe_ ’, ’_????_’/)

!Initial reporting

WRITE(*, *) ’*** Multipipe *** <Standlone Edition > ***’

CALL DATE_AND_TIME(VALUES=DateTimeVals)
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WRITE(*, *) ’Starting Date and Time:’

WRITE(*, ’(I4 , "-", I2 , "-", I2 , "  --  ", I2 , ":", I2, ":", I2)’) &

DateTimeVals (1), DateTimeVals (2), DateTimeVals (3), DateTimeVals (5), DateTimeVals (6), DateTimeVals (7)

WRITE(*, *) ’Beginning Simulation ’

!Process input and build mesh

CALL PerformInputProcessing ()

! Reporting

WRITE(*, *) ’Completed Input Processing and Mesh Development ’

!Set up some formatting now that we know mesh size

WRITE(c_size , ’(I2)’) SIZE(Cells ,1)

WRITE(fmt_domain , *) "("//TRIM(c_size)//"(F7.3,"",""))"

WRITE(fmt_domain2 , *) "("//TRIM(c_size)//"(I7,"",""))"

WRITE(fmt_domain3 , *) "("//TRIM(c_size)//"(A6,"",""))"

!Open output files

OPEN(UNIT=SimConditionsUnitNum , STATUS=’REPLACE ’, FILE=’MainOutput.csv’)

IF (Has%PipeCircuit) OPEN(UNIT=CircuitProfilesUnitNum , STATUS=’REPLACE ’, FILE=’PipeProfiles.csv’)

IF (DoingUGTValidation) OPEN(UNIT=GroundTemperaturesUnitNum , STATUS=’REPLACE ’, FILE=’GroundTemperatures.csv’)

INQUIRE(FILE=stopFile , EXIST=exists)

IF (exists) CALL system(’rm "’ // trim(stopFile) // ’"’)

!Begin time step loop

DO TimeStepIndex = 1, NumTimeSteps

!perform a simulation time step

CALL PerformSimulation(TimeStepIndex , TimeStepSize , NumIterationsUsed , ErrorsFound)

!do some one time reporting

IF (TimeStepIndex == 1) THEN

!Write the main output file header

WRITE(SimConditionsUnitNum , ’(A100)’) &

’TimeStepIndex , Num Iterations , Outdoor Dry Bulb , Relative Humidity , Wind Speed , Solar 

Radiation ’

WRITE(SimConditionsUnitNum , ’(A35)’) &

’[-], [-], [C], [%], [m/s], [W/m2]’

!write a cartesian temperature profile after one time step is done

OPEN(UNIT=TempUnitNum , STATUS=’REPLACE ’, FILE=’After1TimeStepTemps.csv’)

CALL FlushTemperatureField(TempUnitNum , fmt_domain)

CLOSE(TempUnitNum)

!and write the cell type strings

OPEN(UNIT=TempUnitNum , STATUS=’REPLACE ’, FILE=’CellTypes.csv’)

DO Z = LBOUND(Cells ,3), UBOUND(Cells ,3)

WRITE(TempUnitNum , *) ’ ’

WRITE(TempUnitNum , ’(I2)’) Z

DO Y = UBOUND(Cells ,2), LBOUND(Cells ,2), -1

WRITE(TempUnitNum , fmt_domain3) (celltypenames(Cells(:, Y, Z)%CellType))

END DO

END DO

CLOSE(TempUnitNum)

!write some cell properties

OPEN(UNIT=TempUnitNum , STATUS=’REPLACE ’, FILE=’CellGeometry.csv’)

WRITE(TempUnitNum , *) ’Cell Centroid X’

DO Z = LBOUND(Cells ,3), UBOUND(Cells ,3)

WRITE(TempUnitNum , *) ’ ’

WRITE(TempUnitNum , ’(I2)’) Z

DO Y = UBOUND(Cells ,2), LBOUND(Cells ,2), -1

WRITE(TempUnitNum , fmt_domain) (Cells(:, Y, Z)%Centroid%X)

END DO

END DO

WRITE(TempUnitNum , *) ’ ’

WRITE(TempUnitNum , *) ’Cell Centroid Y’

DO Z = LBOUND(Cells ,3), UBOUND(Cells ,3)

WRITE(TempUnitNum , *) ’ ’

WRITE(TempUnitNum , ’(I2)’) Z

DO Y = UBOUND(Cells ,2), LBOUND(Cells ,2), -1

WRITE(TempUnitNum , fmt_domain) (Cells(:, Y, Z)%Centroid%Y)

END DO

END DO

WRITE(TempUnitNum , *) ’ ’

WRITE(TempUnitNum , *) ’Cell Centroid Z’

DO Z = LBOUND(Cells ,3), UBOUND(Cells ,3)

WRITE(TempUnitNum , *) ’ ’

WRITE(TempUnitNum , ’(I2)’) Z

DO Y = UBOUND(Cells ,2), LBOUND(Cells ,2), -1

WRITE(TempUnitNum , fmt_domain) (Cells(:, Y, Z)%Centroid%Z)

END DO

END DO

WRITE(TempUnitNum , *) ’ ’

WRITE(TempUnitNum , *) ’Cell Depth’

DO Z = LBOUND(Cells ,3), UBOUND(Cells ,3)

WRITE(TempUnitNum , *) ’ ’

WRITE(TempUnitNum , ’(I2)’) Z

DO Y = UBOUND(Cells ,2), LBOUND(Cells ,2), -1

WRITE(TempUnitNum , fmt_domain) (Extents%Ymax - Cells(:, Y, Z)%Centroid%Y)

END DO
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END DO

CLOSE(TempUnitNum)

END IF

!report the temperature field on an incremental time step

IF (WriteTempProfiles) THEN

IF (INT(REAL(TimeStepIndex)/REAL(FieldReportIncrement)) == REAL(TimeStepIndex)/REAL(

FieldReportIncrement)) THEN

WRITE(TimeStepFileName , ’(A23 , I6, A7)’) ’./ GNUPlot/AfterTimeStep ’, TimeStepIndex , ’gnu.csv’

OPEN(UNIT=TempUnitNum , STATUS=’REPLACE ’, FILE=TimeStepFileName)

!CALL FlushTemperatureField (TempUnitNum , fmt_domain )

CALL FlushGNUPlotTemperatureField(TempUnitNum , INT(UBOUND(Cells ,3) /2.0))

CLOSE(TempUnitNum)

END IF

END IF

!report the temperature field on the last time step

IF (WriteTempProfiles) THEN

IF (TimeStepIndex == NumTimeSteps) THEN

OPEN(UNIT=TempUnitNum , STATUS=’REPLACE ’, FILE=’AfterLastTimeStep.csv’)

CALL FlushTemperatureField(TempUnitNum , fmt_domain)

CLOSE(TempUnitNum)

END IF

END IF

!write out the pipe circuit distribution each time step -- if there is a pipe circuit

IF (Has%PipeCircuit) THEN

!Do some one -time writing first

IF (TimeStepIndex ==1) THEN

!Prepare format and write header to circuit profiles output

WRITE(c_size , ’(I4)’) SIZE(PipeCircuit%ListOfCircuitPoints)

WRITE(fmt_circuit , *) "("//TRIM(c_size)//"(F7.3,"",""))"

WRITE(fmt_circuit2 , *) "("//TRIM(c_size)//"(I7,"",""))"

WRITE(CircuitProfilesUnitNum , fmt_circuit2) (i, i = LBOUND(PipeCircuit%ListOfCircuitPoints ,1),

UBOUND(PipeCircuit%ListOfCircuitPoints ,1))

!Write header to circuit general output

WRITE(CircuitUnitNum , ’(A60)’) ’Circuit Flow Rate , Circuit Cp, Circuit EFT , Circuit ExFT’

END IF

!Output the profile itself

WRITE(CircuitProfilesUnitNum , fmt_circuit) ( Cells( PipeCircuit%ListOfCircuitPoints(i)%X, PipeCircuit

%ListOfCircuitPoints(i)%Y, PipeCircuit%ListOfCircuitPoints(i)%Z )%PipeCellData%Fluid%MyBase%

Temperature , i=LBOUND(PipeCircuit%ListOfCircuitPoints ,1), UBOUND(PipeCircuit%ListOfCircuitPoints

,1))

END IF

!now process the main output file

WRITE(SimConditionsUnitNum , ’(I6 , ",", I4 , ",", F4.1, ",", F4.1, ",", F4.1, ",", F7.2)’) &

TimeStepIndex , NumIterationsUsed , CurAirTemp , CurRelativeHumidity , CurWindSpeed , CurIncidentSolar

!if we have a pipe circuit , also report those characteristics

IF (Has%PipeCircuit) THEN

WRITE(CircuitUnitNum , ’(F6.3, ",", F6.1, ",", F8.3, ",", F8.3)’) CurCircuitFlowRate ,

CurFluidSpecificHeat , PipeCircuit%CircuitInletCell%PipeCellData%Fluid%MyBase%Temperature ,

PipeCircuit%CircuitOutletCell%PipeCellData%Fluid%MyBase%Temperature

END IF

!report to the console periodically

IF ((REAL(TimeStepIndex)/OutputInterval) == INT(TimeStepIndex/OutputInterval)) THEN

WRITE(*,’(A20 , I6, "/", I6)’) "Completed TimeStep #", TimeStepIndex , NumTimeSteps

END IF

END DO

!close output files

IF (DoingUGTValidation) CLOSE(GroundTemperaturesUnitNum)

IF (Has%PipeCircuit) CLOSE(CircuitProfilesUnitNum)

CLOSE(SimConditionsUnitNum)

!final processing and reporting

WRITE(*, *) ’Simulation Completed ’

CALL DATE_AND_TIME(VALUES=DateTimeVals)

WRITE(*, *) ’Ending Date and Time:’

WRITE(*, ’(I4 , "-", I2 , "-", I2, "  --  ", I2, ":", I2, ":", I2)’) &

DateTimeVals (1), DateTimeVals (2), DateTimeVals (3), DateTimeVals (5), DateTimeVals (6), DateTimeVals (7)

CONTINUE

END PROGRAM
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Listing B.2: Standalone Ground Heat Exchanger Model Source: Data Structures
MODULE PiechowskiData

IMPLICIT NONE

PUBLIC

!Any parameters which need to be commented once inside E+

INTEGER , PARAMETER :: r64=KIND (1.0D0)

REAL(r64), PARAMETER :: Pi = 3.1415926535 d0

character(len =*), parameter :: stopFile = ’stop.stop’

!Define all Enumerations up here

INTEGER , PARAMETER :: PartitionType_BasementWall = -1

INTEGER , PARAMETER :: PartitionType_BasementFloor = -2

INTEGER , PARAMETER :: PartitionType_Pipe = -3

INTEGER , PARAMETER :: RegionType_Pipe = -1

INTEGER , PARAMETER :: RegionType_BasementWall = -2

INTEGER , PARAMETER :: RegionType_BasementFloor = -3

INTEGER , PARAMETER :: RegionType_XDirection = -4

INTEGER , PARAMETER :: RegionType_YDirection = -5

INTEGER , PARAMETER :: RegionType_ZDirection = -6

INTEGER , PARAMETER :: MeshDistribution_Uniform = -1

INTEGER , PARAMETER :: MeshDistribution_SymmetricGeometric = -2

INTEGER , PARAMETER :: SegmentFlow_IncreasingZ = -1

INTEGER , PARAMETER :: SegmentFlow_DecreasingZ = -2

INTEGER , PARAMETER :: Direction_PositiveY = -1

INTEGER , PARAMETER :: Direction_NegativeY = -2

INTEGER , PARAMETER :: Direction_PositiveX = -3

INTEGER , PARAMETER :: Direction_NegativeX = -4

INTEGER , PARAMETER :: Direction_PositiveZ = -5

INTEGER , PARAMETER :: Direction_NegativeZ = -6

INTEGER , PARAMETER :: CellType_Unknown = -1

INTEGER , PARAMETER :: CellType_Pipe = -2

INTEGER , PARAMETER :: CellType_GeneralField = -3

INTEGER , PARAMETER :: CellType_GroundSurface = -4

INTEGER , PARAMETER :: CellType_FarfieldBoundary = -5

INTEGER , PARAMETER :: CellType_AdiabaticWall = -6

INTEGER , PARAMETER :: CellType_BasementWall = -7

INTEGER , PARAMETER :: CellType_BasementFloor = -8

INTEGER , PARAMETER :: CellType_BasementCorner = -9

INTEGER , PARAMETER :: CellType_BasementCutaway = -10

INTEGER , PARAMETER :: BoundaryType_Adiabatic = -1

INTEGER , PARAMETER :: BoundaryType_Farfield = -2

INTEGER , PARAMETER :: FarfieldModel_Constant = -1

INTEGER , PARAMETER :: FarfieldModel_ConstantLinear = -2

INTEGER , PARAMETER :: FarfieldModel_KusudaAchenbach = -3

!Other constants for convenience

REAL(r64), PARAMETER :: SecondsInHour = 3600.0 d0

REAL(r64), PARAMETER :: MinutesInHour = 60.0d0

REAL(r64), PARAMETER :: SecondsInMinute = 60.0d0

REAL(r64), PARAMETER :: HoursInDay = 24.0d0

REAL(r64), PARAMETER :: DaysInYear = 365.0d0

REAL(r64), PARAMETER :: SecondsInDay = SecondsInHour * HoursInDay

REAL(r64), PARAMETER :: SecondsInYear = SecondsInDay * DaysInYear

TYPE BaseThermalPropertySet

REAL(r64) :: Conductivity = 0.0d0 !W/mK

REAL(r64) :: Density = 0.0d0 !kg/m3

REAL(r64) :: SpecificHeat = 0.0d0 !J/kgK

END TYPE

TYPE ExtendedFluidProperties ! : Inherits BaseThermalPropertySet

TYPE(BaseThermalPropertySet) :: MyBase

REAL(r64) :: Viscosity !kg/m-s

REAL(r64) :: Prandtl !-

END TYPE

TYPE ExtendedConstructionProperties ! : Inherits BaseThermalPropertySet

TYPE(BaseThermalPropertySet) :: MyBase

REAL(r64) :: Thickness !m

END TYPE

TYPE BaseCell

REAL(r64) :: Temperature = 0.0d0 !C

REAL(r64) :: Temperature_PrevIteration = 0.0d0 !C

REAL(r64) :: Temperature_PrevTimeStep = 0.0d0 !C

REAL(r64) :: Beta = 0.0d0 !K/W

TYPE(BaseThermalPropertySet) :: Properties
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END TYPE

TYPE RadialCellInformation ! : Inherits BaseCell

TYPE(BaseCell) :: MyBase

REAL(r64) :: RadialCentroid

REAL(r64) :: InnerRadius

REAL(r64) :: OuterRadius

END TYPE

TYPE FluidCellInformation ! : Inherits BaseCell

TYPE(BaseCell) :: MyBase

REAL(r64) :: PipeInnerRadius

REAL(r64) :: Volume

TYPE(ExtendedFluidProperties) :: Properties

END TYPE

TYPE CartesianPipeCellInformation

TYPE(RadialCellInformation), ALLOCATABLE , DIMENSION (:) :: Soil

TYPE(RadialCellInformation) :: Insulation

TYPE(RadialCellInformation) :: Pipe

TYPE(FluidCellInformation) :: Fluid

REAL(r64) :: RadialSliceWidth

REAL(r64) :: InterfaceVolume

END TYPE

TYPE Point

INTEGER :: X

INTEGER :: Y

END TYPE

TYPE PointF

REAL(r64) :: X

REAL(r64) :: Y

END TYPE

TYPE Point3DInteger

INTEGER :: X

INTEGER :: Y

INTEGER :: Z

END TYPE

TYPE Point3DReal

REAL(r64) :: X

REAL(r64) :: Y

REAL(r64) :: Z

END TYPE

TYPE DomainRectangle

INTEGER :: XMin

INTEGER :: XMax

INTEGER :: Ymin

INTEGER :: YMax

END TYPE

TYPE MeshPartition

REAL(r64) :: rDimension

INTEGER :: PartitionType !From Enum: ParitionType

REAL(r64) :: TotalWidth

END TYPE

TYPE GridRegion

REAL(r64) :: Min

REAL(r64) :: Max

INTEGER :: RegionType !From Enum: RegionType

REAL(r64), ALLOCATABLE , DIMENSION (:) :: CellWidths

END TYPE

TYPE TempGridRegionData

REAL(r64) :: Min

REAL(r64) :: Max

INTEGER :: RegionType !From Enum: RegionType

END TYPE

TYPE RectangleF

REAL(r64) :: X_min

REAL(r64) :: Y_min

REAL(r64) :: Width

REAL(r64) :: Height

END TYPE

TYPE NeighborInformation

REAL(r64) :: ThisCentroidToNeighborCentroid

REAL(r64) :: ThisCentroidToNeighborWall

REAL(r64) :: ThisWallToNeighborCentroid

REAL(r64) :: ConductionResistance

TYPE(Point3DInteger) :: NeighborCellIndeces

END TYPE

TYPE RadialSizing

REAL(r64) :: InnerDia

REAL(r64) :: OuterDia

END TYPE
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CONTAINS

! Constructors for generic classes

SUBROUTINE CartesianPipeCellInformation_ctor(c, GridCellWidth , PipeSizes , NumRadialNodes , &

CellDepth , InsulationThickness , RadialGridExtent ,

SimHasInsulation)

TYPE(CartesianPipeCellInformation), INTENT(IN OUT) :: c

REAL(r64) :: GridCellWidth

TYPE(RadialSizing) :: PipeSizes

INTEGER :: NumRadialNodes

REAL(r64) :: CellDepth

REAL(r64) :: InsulationThickness

REAL(r64) :: RadialGridExtent

LOGICAL , INTENT(IN) :: SimHasInsulation

REAL(r64) :: InsulationInnerRadius

REAL(r64) :: InsulationOuterRadius

REAL(r64) :: InsulationCentroid

REAL(r64) :: PipeOuterRadius

REAL(r64) :: PipeInnerRadius

REAL(r64) :: MinimumSoilRadius

REAL(r64) :: ThisSliceInnerRadius

REAL(r64) :: Rval

INTEGER :: RadialCellCtr

!’calculate pipe radius

PipeOuterRadius = PipeSizes%OuterDia / 2

PipeInnerRadius = PipeSizes%InnerDia / 2

!’--we will work from inside out , calculating dimensions and instantiating variables --

!’first instantiate the water cell

CALL FluidCellInformation_ctor(c%Fluid , PipeInnerRadius , CellDepth)

!’then the pipe cell

CALL RadialCellInformation_ctor(c%Pipe , (PipeOuterRadius + PipeInnerRadius) / 2.0d0 , PipeInnerRadius ,

PipeOuterRadius)

!’then the insulation if we have it

IF (InsulationThickness > 0) THEN

InsulationInnerRadius = PipeOuterRadius

InsulationOuterRadius = InsulationInnerRadius + InsulationThickness

InsulationCentroid = (InsulationInnerRadius + InsulationOuterRadius) / 2.0d0

CALL RadialCellInformation_ctor(c%Insulation , InsulationCentroid , InsulationInnerRadius ,

InsulationOuterRadius)

END IF

!’determine where to start applying the radial soil cells based on whether we have insulation or

not

IF (.NOT. SimHasInsulation) THEN

MinimumSoilRadius = PipeOuterRadius

ELSE

MinimumSoilRadius = c%Insulation%OuterRadius

END IF

!’the radial cells are distributed evenly throughout this region

c%RadialSliceWidth = RadialGridExtent / NumRadialNodes

!allocate the array of radial soil nodes

ALLOCATE(c%Soil (0: NumRadialNodes - 1))

!first set Rval to the minimum soil radius plus half a slice thickness for the innermost radial

node

Rval = MinimumSoilRadius + (c%RadialSliceWidth / 2.0d0)

ThisSliceInnerRadius = MinimumSoilRadius

CALL RadialCellInformation_ctor(c%Soil (0), Rval , ThisSliceInnerRadius , ThisSliceInnerRadius + c%

RadialSliceWidth)

!’then loop through the rest and assign them , each radius is simply one more slice thickness

DO RadialCellCtr = 1, UBOUND(c%Soil ,1)

Rval = Rval + c%RadialSliceWidth

ThisSliceInnerRadius = ThisSliceInnerRadius + c%RadialSliceWidth

CALL RadialCellInformation_ctor(c%Soil(RadialCellCtr), Rval , ThisSliceInnerRadius ,

ThisSliceInnerRadius + c%RadialSliceWidth)

END DO

!’also assign the interface cell surrounding the radial system

c%InterfaceVolume = (1.0d0 - (3.1415926535 d0 / 4.0d0)) * (GridCellWidth ** 2) * CellDepth

RETURN

END SUBROUTINE

SUBROUTINE RadialCellInformation_ctor(c, m_RadialCentroid , m_MinRadius , m_MaxRadius)

TYPE(RadialCellInformation), INTENT(IN OUT) :: c

REAL(r64) :: m_RadialCentroid

REAL(r64) :: m_MinRadius

REAL(r64) :: m_MaxRadius

c%RadialCentroid = m_RadialCentroid
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c%InnerRadius = m_MinRadius

c%OuterRadius = m_MaxRadius

RETURN

END SUBROUTINE

SUBROUTINE FluidCellInformation_ctor(c, m_PipeInnerRadius , m_CellDepth)

TYPE(FluidCellInformation), INTENT(IN OUT) :: c

REAL(r64) :: m_PipeInnerRadius

REAL(r64) :: m_CellDepth

c%PipeInnerRadius = m_PipeInnerRadius

c%Volume = 3.1415926535 d0 * (m_PipeInnerRadius ** 2) * m_CellDepth

RETURN

END SUBROUTINE

END MODULE

MODULE mCartesianCell ! : Inherits BaseCell

USE PiechowskiData

IMPLICIT NONE

PUBLIC

TYPE DirectionNeighbor_Dictionary

INTEGER :: Direction !From Enum: Direction

TYPE(NeighborInformation) :: Value

END TYPE

TYPE CartesianCell

TYPE(BaseCell) :: MyBase

INTEGER :: X_index

INTEGER :: Y_index

INTEGER :: Z_index

REAL(r64) :: X_min

REAL(r64) :: X_max

REAL(r64) :: Y_min

REAL(r64) :: Y_max

REAL(r64) :: Z_min

REAL(r64) :: Z_max

TYPE(Point3DReal) :: Centroid

INTEGER :: CellType !From Enum: CellType

INTEGER :: PipeIndex

TYPE(DirectionNeighbor_Dictionary), ALLOCATABLE , DIMENSION (:) :: NeighborInformation

TYPE(CartesianPipeCellInformation) :: PipeCellData

END TYPE

CONTAINS

REAL(r64) FUNCTION Width(c) RESULT (RetVal)

TYPE(CartesianCell), INTENT(IN) :: c

RetVal = c%X_max - c%X_min

RETURN

END FUNCTION

REAL(r64) FUNCTION Height(c) RESULT (RetVal)

TYPE(CartesianCell), INTENT(IN) :: c

RetVal = c%Y_max - c%Y_min

RETURN

END FUNCTION

REAL(r64) FUNCTION Depth(c) RESULT (RetVal)

TYPE(CartesianCell), INTENT(IN) :: c

RetVal = c%Z_max - c%Z_min

RETURN

END FUNCTION

REAL(r64) FUNCTION XNormalArea(c) RESULT (RetVal)

TYPE(CartesianCell), INTENT(IN) :: c

RetVal = Depth(c) * Height(c)

RETURN

END FUNCTION

REAL(r64) FUNCTION YNormalArea(c) RESULT (RetVal)

TYPE(CartesianCell), INTENT(IN) :: c

RetVal = Depth(c) * Width(c)

RETURN

END FUNCTION

REAL(r64) FUNCTION ZNormalArea(c) RESULT (RetVal)

TYPE(CartesianCell), INTENT(IN) :: c

RetVal = Width(c) * Height(c)

RETURN

END FUNCTION

REAL(r64) FUNCTION Volume(c) RESULT (RetVal)

TYPE(CartesianCell), INTENT(IN) :: c

RetVal = Width(c) * Depth(c) * Height(c)

RETURN
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END FUNCTION

TYPE(RectangleF) FUNCTION XYRectangle(c) RESULT (RetVal)

TYPE(CartesianCell), INTENT(IN) :: c

RetVal = RectangleF(c%X_min , c%Y_min , Width(c), Height(c))

RETURN

END FUNCTION

TYPE(RectangleF) FUNCTION XZRectangle(c) RESULT (RetVal)

TYPE(CartesianCell), INTENT(IN) :: c

RetVal = RectangleF(c%X_min , c%Z_min , Width(c), Depth(c))

RETURN

END FUNCTION

TYPE(RectangleF) FUNCTION YZRectangle(c) RESULT (RetVal)

TYPE(CartesianCell), INTENT(IN) :: c

RetVal = RectangleF(c%Y_min , c%Z_min , Height(c), Depth(c))

RETURN

END FUNCTION

REAL(r64) FUNCTION NormalArea(c, Direction) RESULT (RetVal)

TYPE(CartesianCell), INTENT(IN) :: c

INTEGER , INTENT(IN) :: Direction !From Enum: Direction

SELECT CASE (Direction)

CASE (Direction_PositiveY , Direction_NegativeY)

RetVal = YNormalArea(c)

CASE (Direction_PositiveX , Direction_NegativeX)

RetVal = XNormalArea(c)

CASE (Direction_PositiveZ , Direction_NegativeZ)

RetVal = ZNormalArea(c)

END SELECT

RETURN

END FUNCTION

TYPE(NeighborInformation) FUNCTION NeighborInformationArray_Value(dict , direction) RESULT(RetVal)

TYPE(DirectionNeighbor_Dictionary), ALLOCATABLE , DIMENSION (:) :: dict

INTEGER :: Direction !From Enum: Direction

INTEGER :: Index

DO Index = LBOUND(dict ,1), UBOUND(dict ,1)

IF (dict(Index)%Direction == direction) THEN

RetVal = dict(Index)%Value

EXIT

END IF

END DO

RETURN

END FUNCTION

END MODULE

MODULE Extensions

USE PiechowskiData

IMPLICIT NONE

PUBLIC

INTERFACE IsInRange

MODULE PROCEDURE Integer_IsInRange

MODULE PROCEDURE Real_IsInRange

END INTERFACE

CONTAINS

LOGICAL FUNCTION Integer_IsInRange(i, lower , upper) RESULT(RetVal)

INTEGER , INTENT(IN) :: i, lower , upper

IF ((i >= lower) .AND. (i <= upper)) THEN

RetVal = .TRUE.

ELSE

RetVal = .FALSE.

END IF

RETURN

END FUNCTION

LOGICAL FUNCTION Real_IsInRange(r, lower , upper) RESULT(RetVal)

REAL(r64), INTENT(IN) :: r, lower , upper

IF ((r >= lower) .AND. (r <= upper)) THEN

RetVal = .TRUE.

ELSE

RetVal = .FALSE.

END IF

RETURN
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END FUNCTION

LOGICAL FUNCTION CellType_IsFieldCell(CellType) RESULT(RetVal)

INTEGER , INTENT(IN) :: CellType !From Enum: CellType

SELECT CASE (CellType)

CASE (CellType_GeneralField , CellType_BasementCorner , &

CellType_BasementWall , CellType_BasementFloor)

RetVal = .TRUE.

CASE DEFAULT

RetVal = .FALSE.

END SELECT

RETURN

END FUNCTION

REAL(r64) FUNCTION Real_ConstrainTo(r, MinVal , MaxVal) RESULT(RetVal)

REAL(r64), INTENT(IN) :: r, MinVal , MaxVal

RetVal = MIN(r, MaxVal)

RetVal = MAX(r, MinVal)

RETURN

END FUNCTION

LOGICAL FUNCTION MeshPartitionArray_Contains(meshes , value) RESULT(RetVal)

TYPE(MeshPartition), ALLOCATABLE , DIMENSION (:), INTENT(IN) :: meshes

REAL(r64), INTENT(IN) :: value

INTEGER :: meshnum

RetVal = .FALSE.

DO meshnum = LBOUND(meshes , 1), UBOUnD(meshes , 1)

IF (meshes(meshnum)%rDimension == value) THEN

RetVal = .TRUE.

EXIT

END IF

END DO

RETURN

END FUNCTION

REAL(r64) FUNCTION RadialCellInfo_XY_CrossSectArea(r) RESULT (RetVal)

TYPE(RadialCellInformation), INTENT(IN) :: r

RetVal = 3.14159 d0 * ((r%OuterRadius **2) - (r%InnerRadius **2))

RETURN

END FUNCTION

LOGICAL FUNCTION DomainRectangle_Contains(Rect , p) RESULT(RetVal)

TYPE(DomainRectangle), INTENT(IN) :: Rect

TYPE(Point), INTENT(IN) :: p

IF (IsInRange(p%X, Rect%XMin , Rect%XMax) .AND. IsInRange(p%Y, Rect%YMin , Rect%YMax)) THEN

RetVal = .TRUE.

ELSE

RetVal = .FALSE.

END IF

RETURN

END FUNCTION

SUBROUTINE MeshPartition_SelectionSort(X)

TYPE(MeshPartition), ALLOCATABLE , DIMENSION (:), INTENT(IN OUT) :: X

TYPE(MeshPartition) :: TEMP

INTEGER :: I, ISWAP (1), ITEMP , ISWAP1

DO I = LBOUND(X, 1), UBOUND(X, 1) -1

ISWAP=MINLOC(X(I:)%rDimension)

ISWAP1=ISWAP (1)+I-1

IF(ISWAP1.NE.I) THEN

TEMP=X(I)

X(I)=X(ISWAP1)

X(ISWAP1)=TEMP

ENDIF

END DO

RETURN
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END SUBROUTINE

INTEGER FUNCTION MeshPartition_CompareByDimension(x, y) RESULT(RetVal)

TYPE(MeshPartition), INTENT(IN) :: x

TYPE(MeshPartition), INTENT(IN) :: y

IF (x%rDimension < y%rDimension) THEN

RetVal = -1

ELSEIF (x%rDimension > y%rDimension) THEN

RetVal = 1

ELSE

RetVal = 0

ENDIF

RETURN

END FUNCTION

REAL(r64) FUNCTION BaseThermalPropertySet_Diffusivity(p) RESULT(RetVal)

TYPE(BaseThermalPropertySet), INTENT(IN) :: p

RetVal = p%Conductivity / (p%Density * p%SpecificHeat)

RETURN

END FUNCTION

LOGICAL FUNCTION RectangleF_Contains(rect , p) RESULT(RetVal)

TYPE(RectangleF), INTENT(IN) :: rect

TYPE(PointF), INTENT(IN) :: p

RetVal = (((( Rect%X_min <= p%X) .AND. (p%X < (Rect%X_min + rect%Width))) .AND. (rect%Y_min <= p%Y)) .AND.

(p%Y < (rect%Y_min + rect%Height)))

RETURN

END FUNCTION

END MODULE

MODULE Sim

USE PiechowskiData

USE mCartesianCell

IMPLICIT NONE

PUBLIC

! Structure based (loosely) on input data

TYPE MeshExtents

REAL(r64) :: Xmax

REAL(r64) :: Ymax

REAL(r64) :: Zmax

END TYPE

TYPE DistributionStructure

INTEGER :: MeshDistribution !From Enum: MeshDistribution

INTEGER :: RegionMeshCount

REAL(r64) :: GeometricSeriesCoefficient

INTEGER :: BoundaryType !From Enum: BoundaryType

END TYPE

TYPE RadialMeshStructure

INTEGER :: NumRadialCells

REAL(r64) :: RadialMeshThickness

END TYPE

TYPE MeshProperties

TYPE(DistributionStructure) :: X

TYPE(DistributionStructure) :: Y

TYPE(DistributionStructure) :: Z

TYPE(RadialMeshStructure) :: Radial

END TYPE

TYPE PipeSegmentInfo

TYPE(PointF) :: PipeLocation

INTEGER :: FlowDirection !From Enum: SegmentFlow

TYPE(Point) :: PipeCellCoordinates

END TYPE

TYPE PipeCircuitInfo

TYPE(CartesianCell), POINTER :: CircuitInletCell

TYPE(CartesianCell), POINTER :: CircuitOutletCell

TYPE(RadialSizing) :: PipeSize

TYPE(RadialSizing) :: InsulationSize

TYPE(PipeSegmentInfo), ALLOCATABLE , DIMENSION (:) :: PipeSegments

REAL(r64) :: CurCircuitFlowRate

REAL(r64) :: CurCircuitConvectionCoefficient

TYPE(ExtendedFluidProperties) :: CurFluidPropertySet

TYPE(Point3DInteger), ALLOCATABLE , DIMENSION (:) :: ListOfCircuitPoints

END TYPE

TYPE TransientInfo
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REAL(r64) :: Convergence_CurrentToPrevIteration

INTEGER :: MaxIterationsPerTS

END TYPE

TYPE SimulationControl

REAL(r64) :: DomainInitialTemperature

REAL(r64) :: MinimumTemperatureLimit = -1000

REAL(r64) :: MaximumTemperatureLimit = 1000

TYPE(TransientInfo) :: Cartesian

TYPE(TransientInfo) :: Radial

END TYPE

TYPE Farfield_Constant

REAL(r64) :: Temperature !C

END TYPE

TYPE Farfield_ConstantLinear

REAL(r64) :: SurfaceTemperature !C

REAL(r64) :: Slope !C/[ scaled depth]

END TYPE

TYPE Farfield_KusudaAchenbach

REAL(r64) :: AverageGroundTemperature !C

REAL(r64) :: AverageGroundTemperatureAmplitude !C

REAL(r64) :: PhaseShiftOfMinGroundTempDays !days

REAL(r64) :: PhaseShiftOfMinGroundTemp !seconds

END TYPE

TYPE FarfieldInfo

INTEGER :: Model !From Enum: FarfieldModel

TYPE(Farfield_Constant) :: Constant

TYPE(Farfield_ConstantLinear) :: ConstantLinear

TYPE(Farfield_KusudaAchenbach) :: KusudaAchenbach

END TYPE

TYPE BasementZoneInfo

REAL(r64) :: Depth !m

REAL(r64) :: Width

LOGICAL :: ShiftPipesByWidth

INTEGER :: UnderBasementBoundaryType !From Enum: BoundaryType

TYPE(ExtendedConstructionProperties) :: BasementFloor

TYPE(ExtendedConstructionProperties) :: BasementWall

REAL(r64) :: CurBasementTemperature

REAL(r64) :: CurBasementWallConvectionCoeff

REAL(r64) :: CurBasementFloorConvectionCoeff

END TYPE

! "Input" data structure variables

TYPE(MeshExtents) :: Extents

TYPE(MeshProperties) :: Mesh

TYPE(PipeCircuitInfo), SAVE :: PipeCircuit

TYPE(BaseThermalPropertySet), SAVE :: GroundProperties

TYPE(BaseThermalPropertySet), SAVE :: PipeProperties

TYPE(BaseThermalPropertySet), SAVE :: InsulationProperties

TYPE(SimulationControl), SAVE :: SimControls

TYPE(FarfieldInfo) :: Farfield

TYPE(BasementZoneInfo), SAVE :: BasementZone

! Internal structure

TYPE HasStuff

LOGICAL :: Basement

LOGICAL :: PipeCircuit

LOGICAL :: Insulation

END TYPE

TYPE(HasStuff) :: Has

TYPE DirectionReal_Dictionary

INTEGER :: Direction !From Enum: Direction

REAL(r64) :: Value

END TYPE

TYPE ReportingInformation

TYPE(DirectionReal_Dictionary), ALLOCATABLE , DIMENSION (:) :: SurfaceHeatTransfer

REAL(r64) :: TotalBoundaryHeatTransfer

REAL(r64) :: EnergyStoredInCells

REAL(r64) :: AverageSurfaceTemperature

REAL(r64) :: PipeCircuitHeatTransferMCpDT

REAL(r64) :: PipeCircuitHeatTransferUADT

REAL(r64) :: BasementWallHeatTransfer

REAL(r64) :: BasementFloorHeatTransfer

REAL(r64) :: AverageBasementFloorTemperature

REAL(r64) :: AverageBasementWallTemperature

END TYPE

TYPE(ReportingInformation) :: Reporting

TYPE(CartesianCell), ALLOCATABLE , DIMENSION (:,:,:), TARGET :: Cells

TYPE MeshPartitions

TYPE(MeshPartition), ALLOCATABLE , DIMENSION (:) :: X

TYPE(MeshPartition), ALLOCATABLE , DIMENSION (:) :: Y

END TYPE

TYPE(MeshPartitions) :: Partitions

INTEGER :: BasementWallXIndex = -1

INTEGER :: BasementFloorYIndex = -1

CONTAINS
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! Extension methods for Sim classes

REAL(r64) FUNCTION RadialSizing_Thickness(r) RESULT (RetVal)

TYPE(RadialSizing), INTENT(IN) :: r

RetVal = (r%OuterDia - r%InnerDia) / 2.0d0

RETURN

END FUNCTION

SUBROUTINE PipeSegmentInfo_InitPipeCells(s, x, y)

TYPE(PipeSegmentInfo), INTENT(IN OUT) :: s

INTEGER , INTENT(IN) :: x, y

TYPE(Point) :: TempPt

TempPt%X = x

TempPt%Y = y

s%PipeCellCoordinates = TempPt

RETURN

END SUBROUTINE

SUBROUTINE PipeCircuitInfo_InitInOutCells(c, in, out)

TYPE(PipeCircuitInfo), INTENT(IN OUT) :: c

TYPE(CartesianCell), INTENT(IN), TARGET :: in, out

c%CircuitInletCell => in

c%CircuitOutletCell => out

RETURN

END SUBROUTINE

! Convergence checking

LOGICAL FUNCTION IsConverged_CurrentToPrevIteration(MaxDivAmount) RESULT (RetVal)

REAL(r64), INTENT(IN OUT) :: MaxDivAmount

REAL(r64) :: LocalMax , ThisCellMax

INTEGER :: X, Y, Z

TYPE(CartesianCell) :: ThisCell

!REAL(r64) :: MaxPipeCellDeviation

!LOGICAL :: ThisPipeCellConverged

LocalMax = 0.0d0

DO Z = LBOUND(Cells ,3), UBOUND(Cells ,3)

DO Y = LBOUND(Cells ,2), UBOUND(Cells ,2)

DO X = LBOUND(Cells ,1), UBOUND(Cells ,1)

ThisCell = Cells(X, Y, Z)

ThisCellMax = ABS(ThisCell%MyBase%Temperature - ThisCell%MyBase%Temperature_PrevIteration)

LocalMax = MAX(LocalMax , ThisCellMax)

END DO

END DO

END DO

RetVal = (LocalMax < SimControls%Cartesian%Convergence_CurrentToPrevIteration)

RETURN

END FUNCTION

LOGICAL FUNCTION IsConverged_PipeCurrentToPrevIteration(CellToCheck , MaxDivAmount) RESULT (RetVal)

TYPE(CartesianCell), INTENT(IN) :: CellToCheck

REAL(r64), INTENT(IN OUT) :: MaxDivAmount

INTEGER :: RadialCtr

REAL(r64) :: ThisCellMax

TYPE(RadialCellInformation) :: radCell

MaxDivAmount = 0.0d0

DO RadialCtr = LBOUND(CellToCheck%PipeCellData%Soil ,1), UBOUND(CellToCheck%PipeCellData%Soil ,1)

radCell = CellToCheck%PipeCellData%Soil(RadialCtr)

ThisCellMax = ABS(radCell%MyBase%Temperature - radCell%MyBase%Temperature_PrevIteration)

IF (ThisCellMax > MaxDivAmount) THEN

MaxDivAmount = ThisCellMax

END IF

END DO

!’also do the pipe cell

ThisCellMax = ABS(CellToCheck%PipeCellData%Pipe%MyBase%Temperature - CellToCheck%PipeCellData%

Pipe%MyBase%Temperature_PrevIteration)

IF (ThisCellMax > MaxDivAmount) THEN

MaxDivAmount = ThisCellMax

END IF

!’also do the water cell

ThisCellMax = ABS(CellToCheck%PipeCellData%Fluid%MyBase%Temperature - CellToCheck%PipeCellData%

Fluid%MyBase%Temperature_PrevIteration)

IF (ThisCellMax > MaxDivAmount) THEN

MaxDivAmount = ThisCellMax

END IF

!’also do insulation if it exists

IF (Has%Insulation) THEN

ThisCellMax = ABS(CellToCheck%PipeCellData%Insulation%MyBase%Temperature - CellToCheck%

PipeCellData%Insulation%MyBase%Temperature_PrevIteration)

IF (ThisCellMax > MaxDivAmount) THEN

MaxDivAmount = ThisCellMax

END IF

END IF
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RetVal = (MaxDivAmount < SimControls%Radial%Convergence_CurrentToPrevIteration)

RETURN

END FUNCTION

!Write temperature field to file lun using format fmt

SUBROUTINE FlushTemperatureField(lun , fmt)

INTEGER , INTENT(IN) :: lun !Unit number to write temperature field

CHARACTER (*), INTENT(IN) :: fmt

INTEGER :: Y

INTEGER :: Z

DO Z = LBOUND(Cells ,3), UBOUND(Cells ,3)

WRITE(lun , *) ’ ’

WRITE(lun , ’(I2)’) Z

DO Y = UBOUND(Cells ,2), LBOUND(Cells ,2), -1

WRITE(lun , fmt) (Cells(:, Y, Z)%MyBase%Temperature)

END DO

END DO

END SUBROUTINE

!Write temperature field to file lun using format fmt

SUBROUTINE FlushGNUPlotTemperatureField(lun , Z)

INTEGER , INTENT(IN) :: lun !Unit number to write temperature field

INTEGER , INTENT(IN) :: Z !index of z to report

INTEGER :: X

INTEGER :: Y

DO Y = UBOUND(Cells ,2), LBOUND(Cells ,2), -1

DO X = LBOUND(Cells ,1), UBOUND(Cells ,1)

WRITE(lun , ’(3(F7.3, ","))’) Cells(X, Y, Z)%Centroid%X, Cells(X, Y, Z)%Centroid%Y, Cells(X, Y, Z)

%MyBase%Temperature

END DO

WRITE(lun , *) ’ ’

END DO

END SUBROUTINE

! Set cell array temperature values

SUBROUTINE SetAllCellTempsToValue(NewTemp)

REAL(r64) :: NewTemp

INTEGER :: X, Y, Z, RadCtr

TYPE(CartesianCell) :: ThisCell

DO Z = LBOUND(Cells ,3), UBOUND(Cells ,3)

DO Y = LBOUND(Cells ,2), UBOUND(Cells ,2)

DO X = LBOUND(Cells ,1), UBOUND(Cells ,1)

Cells(X, Y, Z)%MyBase%Temperature = NewTemp

IF (Cells(X, Y, Z)%CellType == CellType_Pipe) THEN

DO RadCtr = LBOUND(Cells(X, Y, Z)%PipeCellData%Soil , 1), UBOUND(Cells(X, Y, Z)%

PipeCellData%Soil , 1)

Cells(X, Y, Z)%PipeCellData%Soil(RadCtr)%MyBase%Temperature = NewTemp

END DO

Cells(X, Y, Z)%PipeCellData%Fluid%MyBase%Temperature = NewTemp

Cells(X, Y, Z)%PipeCellData%Pipe%MyBase%Temperature = NewTemp

IF (Has%Insulation) THEN

Cells(X, Y, Z)%PipeCellData%Insulation%MyBase%Temperature = NewTemp

END IF

END IF

END DO

END DO

END DO

RETURN

END SUBROUTINE

SUBROUTINE SetAllCellTempPrevItersToValue(NewTemp)

REAL(r64) :: NewTemp

INTEGER :: X, Y, Z, RadCtr

TYPE(CartesianCell) :: ThisCell

DO Z = LBOUND(Cells ,3), UBOUND(Cells ,3)

DO Y = LBOUND(Cells ,2), UBOUND(Cells ,2)

DO X = LBOUND(Cells ,1), UBOUND(Cells ,1)

Cells(X, Y, Z)%MyBase%Temperature_PrevIteration = NewTemp

IF (Cells(X, Y, Z)%CellType == CellType_Pipe) THEN

DO RadCtr = LBOUND(Cells(X, Y, Z)%PipeCellData%Soil , 1), UBOUND(Cells(X, Y, Z)%

PipeCellData%Soil , 1)

Cells(X, Y, Z)%PipeCellData%Soil(RadCtr)%MyBase%Temperature_PrevIteration = NewTemp

END DO

Cells(X, Y, Z)%PipeCellData%Fluid%MyBase%Temperature_PrevIteration = NewTemp

Cells(X, Y, Z)%PipeCellData%Pipe%MyBase%Temperature_PrevIteration = NewTemp
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IF (Has%Insulation) THEN

Cells(X, Y, Z)%PipeCellData%Insulation%MyBase%Temperature_PrevIteration = NewTemp

END IF

END IF

END DO

END DO

END DO

RETURN

END SUBROUTINE

SUBROUTINE SetAllCellTempPrevTimesToValue(NewTemp)

REAL(r64) :: NewTemp

INTEGER :: X, Y, Z, RadCtr

TYPE(CartesianCell) :: ThisCell

DO Z = LBOUND(Cells ,3), UBOUND(Cells ,3)

DO Y = LBOUND(Cells ,2), UBOUND(Cells ,2)

DO X = LBOUND(Cells ,1), UBOUND(Cells ,1)

Cells(X, Y, Z)%MyBase%Temperature_PrevTimeStep = NewTemp

IF (Cells(X, Y, Z)%CellType == CellType_Pipe) THEN

DO RadCtr = LBOUND(Cells(X, Y, Z)%PipeCellData%Soil , 1), UBOUND(Cells(X, Y, Z)%

PipeCellData%Soil , 1)

Cells(X, Y, Z)%PipeCellData%Soil(RadCtr)%MyBase%Temperature_PrevTimeStep = NewTemp

END DO

Cells(X, Y, Z)%PipeCellData%Fluid%MyBase%Temperature_PrevTimeStep = NewTemp

Cells(X, Y, Z)%PipeCellData%Pipe%MyBase%Temperature_PrevTimeStep = NewTemp

IF (Has%Insulation) THEN

Cells(X, Y, Z)%PipeCellData%Insulation%MyBase%Temperature_PrevTimeStep = NewTemp

END IF

END IF

END DO

END DO

END DO

RETURN

END SUBROUTINE

SUBROUTINE SetAllCellTempTypesToValue(NewTemp)

REAL(r64) :: NewTemp

CALL SetAllCellTempPrevItersToValue(NewTemp)

CALL SetAllCellTempPrevTimesToValue(NewTemp)

CALL SetAllCellTempsToValue(NewTemp)

RETURN

END SUBROUTINE

SUBROUTINE ResetAllCellTempTypesToDefault ()

CALL SetAllCellTempTypesToValue(SimControls%DomainInitialTemperature)

END SUBROUTINE

SUBROUTINE ShiftTemperaturesForNewTimeStep ()

INTEGER :: X, Y, Z, RadCtr

TYPE(CartesianCell) :: ThisCell

DO Z = LBOUND(Cells ,3), UBOUND(Cells ,3)

DO Y = LBOUND(Cells ,2), UBOUND(Cells ,2)

DO X = LBOUND(Cells ,1), UBOUND(Cells ,1)

Cells(X, Y, Z)%MyBase%Temperature_PrevTimeStep = Cells(X, Y, Z)%MyBase%Temperature

IF (Cells(X, Y, Z)%CellType == CellType_Pipe) THEN

DO RadCtr = LBOUND(Cells(X, Y, Z)%PipeCellData%Soil , 1), UBOUND(Cells(X, Y, Z)%

PipeCellData%Soil , 1)

Cells(X, Y, Z)%PipeCellData%Soil(RadCtr)%MyBase%Temperature_PrevTimeStep = Cells(X, Y

, Z)%PipeCellData%Soil(RadCtr)%MyBase%Temperature

END DO

Cells(X, Y, Z)%PipeCellData%Fluid%MyBase%Temperature_PrevTimeStep = Cells(X, Y, Z)%

PipeCellData%Fluid%MyBase%Temperature

Cells(X, Y, Z)%PipeCellData%Pipe%MyBase%Temperature_PrevTimeStep = Cells(X, Y, Z)%

PipeCellData%Pipe%MyBase%Temperature

IF (Has%Insulation) THEN

Cells(X, Y, Z)%PipeCellData%Insulation%MyBase%Temperature_PrevTimeStep = Cells(X, Y,

Z)%PipeCellData%Insulation%MyBase%Temperature

END IF

END IF

END DO

END DO

END DO

RETURN

END SUBROUTINE

SUBROUTINE ShiftTemperaturesForNewIteration ()

INTEGER :: X, Y, Z, RadCtr

251



TYPE(CartesianCell) :: ThisCell

DO Z = LBOUND(Cells ,3), UBOUND(Cells ,3)

DO Y = LBOUND(Cells ,2), UBOUND(Cells ,2)

DO X = LBOUND(Cells ,1), UBOUND(Cells ,1)

Cells(X, Y, Z)%MyBase%Temperature_PrevIteration = Cells(X, Y, Z)%MyBase%Temperature

IF (Cells(X, Y, Z)%CellType == CellType_Pipe) THEN

DO RadCtr = LBOUND(Cells(X, Y, Z)%PipeCellData%Soil , 1), UBOUND(Cells(X, Y, Z)%

PipeCellData%Soil , 1)

Cells(X, Y, Z)%PipeCellData%Soil(RadCtr)%MyBase%Temperature_PrevIteration = Cells(X,

Y, Z)%PipeCellData%Soil(RadCtr)%MyBase%Temperature

END DO

Cells(X, Y, Z)%PipeCellData%Fluid%MyBase%Temperature_PrevIteration = Cells(X, Y, Z)%

PipeCellData%Fluid%MyBase%Temperature

Cells(X, Y, Z)%PipeCellData%Pipe%MyBase%Temperature_PrevIteration = Cells(X, Y, Z)%

PipeCellData%Pipe%MyBase%Temperature

IF (Has%Insulation) THEN

Cells(X, Y, Z)%PipeCellData%Insulation%MyBase%Temperature_PrevIteration = Cells(X, Y,

Z)%PipeCellData%Insulation%MyBase%Temperature

END IF

END IF

END DO

END DO

END DO

RETURN

END SUBROUTINE

SUBROUTINE ShiftPipeTemperaturesForNewIteration(ThisPipeCell)

TYPE(CartesianCell), INTENT(IN OUT) :: ThisPipeCell

INTEGER :: RadCtr

IF (ThisPipeCell%CellType == CellType_Pipe) THEN !It better be!

DO RadCtr = LBOUND(ThisPipeCell%PipeCellData%Soil , 1), UBOUND(ThisPipeCell%PipeCellData%Soil , 1)

ThisPipeCell%PipeCellData%Soil(RadCtr)%MyBase%Temperature_PrevIteration = ThisPipeCell%

PipeCellData%Soil(RadCtr)%MyBase%Temperature

END DO

ThisPipeCell%PipeCellData%Fluid%MyBase%Temperature_PrevIteration = ThisPipeCell%PipeCellData%Fluid%

MyBase%Temperature

ThisPipeCell%PipeCellData%Pipe%MyBase%Temperature_PrevIteration = ThisPipeCell%PipeCellData%Pipe%

MyBase%Temperature

IF (Has%Insulation) THEN

ThisPipeCell%PipeCellData%Insulation%MyBase%Temperature_PrevIteration = ThisPipeCell%PipeCellData

%Insulation%MyBase%Temperature

END IF

END IF

RETURN

END SUBROUTINE

SUBROUTINE SetAllPipeTemperaturesToValue(ThisPipeCell , NewTemp , NewFluidTemp)

TYPE(CartesianCell), INTENT(IN OUT) :: ThisPipeCell

REAL(r64) :: NewTemp

REAL(r64), OPTIONAL :: NewFluidTemp

INTEGER :: RadCtr

IF (ThisPipeCell%CellType == CellType_Pipe) THEN !It better be!

DO RadCtr = LBOUND(ThisPipeCell%PipeCellData%Soil , 1), UBOUND(ThisPipeCell%PipeCellData%Soil , 1)

ThisPipeCell%PipeCellData%Soil(RadCtr)%MyBase%Temperature = NewTemp

END DO

IF (PRESENT(NewFluidTemp)) THEN

ThisPipeCell%PipeCellData%Fluid%MyBase%Temperature = NewFluidTemp

ELSE

ThisPipeCell%PipeCellData%Fluid%MyBase%Temperature = NewTemp

END IF

ThisPipeCell%PipeCellData%Pipe%MyBase%Temperature = NewTemp

IF (Has%Insulation) THEN

ThisPipeCell%PipeCellData%Insulation%MyBase%Temperature = NewTemp

END IF

ThisPipeCell%MyBase%Temperature = NewTemp

END IF

RETURN

END SUBROUTINE

LOGICAL FUNCTION CheckForOutOfRangeTemps () RESULT (RetVal)

IF (ANY(Cells%MyBase%Temperature .GT. SimControls%MaximumTemperatureLimit) .OR. &

ANY(Cells%MyBase%Temperature .LT. SimControls%MinimumTemperatureLimit)) THEN

RetVal = .TRUE.

ELSE

RetVal = .FALSE.

END IF

RETURN
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END FUNCTION

INTEGER FUNCTION GetAvailableNeighborCountForThisCell(c) RESULT (RetVal)

TYPE(CartesianCell), INTENT(IN) :: c

INTEGER :: x, y, z

x = c%X_index

y = c%Y_index

z = c%Z_index

RetVal = 0

IF(x>0) RetVal = RetVal + 1

IF(x<UBOUND(Cells ,1)) RetVal = RetVal + 1

IF(y>0) RetVal = RetVal + 1

IF(y<UBOUND(Cells ,2)) RetVal = RetVal + 1

IF(z>0) RetVal = RetVal + 1

IF(z<UBOUND(Cells ,3)) RetVal = RetVal + 1

RETURN

END FUNCTION

!Use GetAvailableNeighborCountForThisCell to first get the size of the array coming back!

FUNCTION GetAvailableNeighborsForThisCell(c) RESULT (RetVal)

TYPE(CartesianCell), INTENT(IN) :: c

INTEGER , ALLOCATABLE , DIMENSION (:) :: RetVal

INTEGER :: x, y, z

INTEGER :: Ctr

x = c%X_index

y = c%Y_index

z = c%Z_index

RetVal = 0

Ctr = -1

IF(x>0) THEN

Ctr = Ctr + 1

RetVal(Ctr) = Direction_NegativeX

END IF

IF(x<UBOUND(Cells ,1)) THEN

Ctr = Ctr + 1

RetVal(Ctr) = Direction_PositiveX

END IF

IF(y>0) THEN

Ctr = Ctr + 1

RetVal(Ctr) = Direction_NegativeY

END IF

IF(y<UBOUND(Cells ,2)) THEN

Ctr = Ctr + 1

RetVal(Ctr) = Direction_PositiveY

END IF

IF(z>0) THEN

Ctr = Ctr + 1

RetVal(Ctr) = Direction_NegativeZ

END IF

IF(z<UBOUND(Cells ,3)) THEN

Ctr = Ctr + 1

RetVal(Ctr) = Direction_PositiveZ

END IF

RETURN

END FUNCTION

END MODULE
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Listing B.3: Standalone Ground Heat Exchanger Model Source: Main Routines
MODULE PiechowskiInputManager

USE PiechowskiData

USE Sim

USE Extensions

IMPLICIT NONE

PUBLIC

TYPE DirectionPackage

REAL(r64) :: ExtentMax

INTEGER :: Direction !From Enum: RegionType

CHARACTER(len=1) :: ID

END TYPE

PUBLIC PerformInputProcessing

CONTAINS

TYPE(DirectionPackage) FUNCTION DirectionPack(dir) RESULT(RetVal)

INTEGER , INTENT(IN) :: dir ! From Enum: RegionType

SELECT CASE (dir)

CASE (RegionType_XDirection)

RetVal = DirectionPackage(Extents%XMax , RegionType_XDirection , ’X’)

CASE (RegionType_YDirection)

RetVal = DirectionPackage(Extents%YMax , RegionType_YDirection , ’Y’)

CASE (RegionType_ZDirection)

RetVal = DirectionPackage(Extents%ZMax , RegionType_ZDirection , ’Z’)

CASE DEFAULT

!Debug error

END SELECT

RETURN

END FUNCTION

SUBROUTINE PerformInputProcessing ()

!fill the data structure

CALL InputProcessor ()

!from the input data structure , generate and initialize the mesh

CALL DevelopMesh ()

! initialize cell array

CALL ResetAllCellTempTypesToDefault ()

END SUBROUTINE

SUBROUTINE InputProcessor ()

LOGICAL :: MeshCountInfoAlreadyShown

INTEGER :: PipeCtr

INTEGER , PARAMETER :: FileUnit = 123

LOGICAL :: ParameterFileExists

INTEGER :: IOStatus

CHARACTER(len =100) :: ReadLine

CHARACTER(len =30) :: Key

REAL(r64) :: Value

INTEGER :: Pos

!Come up with some default values first

REAL(r64) :: KusudaAvgTemp = 15.5 !C

REAL(r64) :: KusudaAvgAmp = 12.8 !C

REAL(r64) :: KusudaPhase = 17.3 !days

REAL(r64) :: GroundDensity = 962.0 !kg/m3

REAL(r64) :: GroundSpecHeat = 2576.0 !J/kg -K

!Then read the input file to override as necessary

INQUIRE(FILE=’parameters ’, EXIST=ParameterFileExists)

IF (ParameterFileExists) THEN

OPEN (FileUnit , FILE=’parameters ’)

DO ! Indefinitely

! read the entire line from the data file

READ(FileUnit , FMT=’(A)’, IOSTAT=IOStatus) ReadLine

! if it is a comment line then skip it

IF (ReadLine (1:1)==’!’) CYCLE

! if there is a problem then exit

IF (IOStatus .NE. 0) EXIT

! check the Key and assign the value

ReadLine = ADJUSTL(ReadLine)

Pos = SCAN(ReadLine , ’=’)

IF (Pos <= 1) THEN

!bad line?
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END IF

READ(ReadLine (1:Pos -1), *) Key

READ(ReadLine(Pos +1:), *) Value

CALL To_upper(Key)

SELECT CASE (TRIM(Key))

CASE (’KUSUDAAVGTEMP ’)

KusudaAvgTemp = Value

WRITE (*, *) ’ * Override * KusudaAvgTemp  = ’, KusudaAvgTemp

CASE (’KUSUDAAVGAMP ’)

KusudaAvgAmp = Value

WRITE (*, *) ’ * Override * KusudaAvgAmp   = ’, KusudaAvgAmp

CASE (’KUSUDAPHASE ’)

KusudaPhase = Value

WRITE (*, *) ’ * Override * KusudaPhase    = ’, KusudaPhase

CASE (’GROUNDDENSITY ’)

GroundDensity = Value

WRITE (*, *) ’ * Override * GroundDensity  = ’, GroundDensity

CASE (’GROUNDSPECHEAT ’)

GroundSpecHeat = Value

WRITE (*, *) ’ * Override * GroundSpecHeat = ’, GroundSpecHeat

CASE DEFAULT

END SELECT

END DO

CLOSE(FileUnit)

END IF

Extents%Xmax = 10

Extents%Ymax = 4.877 !16 feet

Extents%Zmax = 36.84

CALL ReadPipeCircuitData ()

IF (Has%PipeCircuit) THEN

!’ then some general pipe properties

PipeCircuit%PipeSize%InnerDia = 0.016d0

PipeCircuit%PipeSize%OuterDia = 0.02667 d0

!’ then some general insulation properties

!Read a flag whether or not there is insulation

IF (.FALSE.) THEN

PipeCircuit%InsulationSize%OuterDia = 0.011d0

PipeCircuit%InsulationSize%InnerDia = PipeCircuit%PipeSize%OuterDia

Has%Insulation = .TRUE.

ELSE

Has%Insulation = .FALSE.

END IF

!’ wait to evaluate the pipe locations until we read in basement data to see if they are shifted ...

END IF

!’ next meshing properties

MeshCountInfoAlreadyShown = .FALSE.

!’ first x values

Mesh%X%MeshDistribution = MeshDistribution_Uniform

Mesh%X%RegionMeshCount = 9

IF (Mesh%X%MeshDistribution == MeshDistribution_SymmetricGeometric) THEN

IF (MOD(Mesh%X%RegionMeshCount , 2) .NE. 0) THEN

Mesh%X%RegionMeshCount = Mesh%X%RegionMeshCount + 1

MeshCountInfoAlreadyShown = .TRUE.

Mesh%X%GeometricSeriesCoefficient = 1.4d0

ELSE

Mesh%X%GeometricSeriesCoefficient = 1.0d0

END IF

END IF

Mesh%Y%MeshDistribution = MeshDistribution_Uniform

Mesh%Y%RegionMeshCount = 32

IF (Mesh%Y%MeshDistribution == MeshDistribution_SymmetricGeometric) THEN

IF (MOD(Mesh%Y%RegionMeshCount , 2) .NE. 0) THEN

Mesh%Y%RegionMeshCount = Mesh%Y%RegionMeshCount + 1

MeshCountInfoAlreadyShown = .TRUE.

Mesh%Y%GeometricSeriesCoefficient = 1.4d0

ELSE

Mesh%Y%GeometricSeriesCoefficient = 1.0d0

END IF

END IF

Mesh%Z%MeshDistribution = MeshDistribution_Uniform

Mesh%Z%RegionMeshCount = 9

Mesh%Z%BoundaryType = BoundaryType_Farfield

IF (Mesh%Z%MeshDistribution == MeshDistribution_SymmetricGeometric) THEN

IF (MOD(Mesh%Z%RegionMeshCount , 2) .NE. 0) THEN

Mesh%Z%RegionMeshCount = Mesh%Z%RegionMeshCount + 1

MeshCountInfoAlreadyShown = .TRUE.

Mesh%Z%GeometricSeriesCoefficient = 1.1d0

ELSE

Mesh%Z%GeometricSeriesCoefficient = 1.0d0

END IF

END IF
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IF (Has%PipeCircuit) THEN

Mesh%Radial%NumRadialCells = 2

Mesh%Radial%RadialMeshThickness = 0.03

END IF

IF (Has%PipeCircuit) THEN

PipeProperties%Conductivity = 0.3895

PipeProperties%Density = 641

PipeProperties%SpecificHeat = 2405

END IF

GroundProperties%Conductivity = 1.08

GroundProperties%Density = GroundDensity

GroundProperties%SpecificHeat = GroundSpecHeat

IF (Has%PipeCircuit .AND. Has%Insulation) THEN

InsulationProperties%Conductivity = 0.154

InsulationProperties%Density = 500

InsulationProperties%SpecificHeat = 816

END IF

Farfield%Model = FarfieldModel_KusudaAchenbach

SELECT CASE (Farfield%Model)

CASE (FarfieldModel_Constant)

Farfield%Constant%Temperature = 12

CASE (FarfieldModel_ConstantLinear)

Farfield%ConstantLinear%SurfaceTemperature = 12

Farfield%ConstantLinear%Slope = -2

CASE (FarfieldModel_KusudaAchenbach)

Farfield%KusudaAchenbach% AverageGroundTemperature = KusudaAvgTemp

Farfield%KusudaAchenbach% AverageGroundTemperatureAmplitude = KusudaAvgAmp

Farfield%KusudaAchenbach% PhaseShiftOfMinGroundTempDays = KusudaPhase

Farfield%KusudaAchenbach% PhaseShiftOfMinGroundTemp = Farfield%KusudaAchenbach%

PhaseShiftOfMinGroundTempDays * SecondsInDay

END SELECT

!’basement zone boundary data

BasementZone%Depth = 2.5d0

BasementZone%Width = 6.0d0

IF (( BasementZone%Depth > 0) .OR. (BasementZone%Width > 0)) THEN

Has%Basement = .FALSE.

BasementZone%ShiftPipesByWidth = .TRUE.

IF (BasementZone%ShiftPipesByWidth) THEN

IF (Has%PipeCircuit) THEN

DO PipeCtr = LBOUND(PipeCircuit%PipeSegments , 1), UBOUND(PipeCircuit%PipeSegments , 1)

PipeCircuit%PipeSegments(PipeCtr)%PipeLocation%X = PipeCircuit%PipeSegments(PipeCtr)%

PipeLocation%X + BasementZone%Width

END DO

END IF

END IF

BasementZone%UnderBasementBoundaryType = BoundaryType_Adiabatic

BasementZone%BasementWall%MyBase%Conductivity = 1

BasementZone%BasementWall%MyBase%Density = 1

BasementZone%BasementWall%MyBase%SpecificHeat = 1

BasementZone%BasementWall%Thickness = 0.1

BasementZone%BasementFloor%MyBase%Conductivity = 1

BasementZone%BasementFloor%MyBase%Density = 1

BasementZone%BasementFloor%MyBase%SpecificHeat = 1

BasementZone%BasementFloor%Thickness = 0.1

ELSE

Has%Basement = .FALSE.

END IF

SimControls%DomainInitialTemperature = 10.0d0

SimControls%Cartesian%Convergence_CurrentToPrevIteration = 0.00001 d0

SimControls%Cartesian%MaxIterationsPerTS = 250

IF (Has%PipeCircuit) THEN

SimControls%Radial%Convergence_CurrentToPrevIteration = 0.005

SimControls%Radial%MaxIterationsPerTS = 150

END IF

END SUBROUTINE

SUBROUTINE To_upper(str)

CHARACTER (*), INTENT(in out) :: str

INTEGER :: i

DO i = 1, len(str)

SELECT CASE(str(i:i))

CASE("a":"z")

str(i:i) = ACHAR(IACHAR(str(i:i)) -32)

END SELECT

END DO

END SUBROUTINE To_upper

SUBROUTINE ReadPipeCircuitData ()

LOGICAL :: TrustMeItHasOne = .FALSE.

INTEGER :: TrustMeNumPipes = 6

INTEGER :: PipeSegmentCounter

REAL(r64) :: XCoordinate

REAL(r64) :: YCoordinate
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IF (TrustMeItHasOne) THEN

Has%PipeCircuit = .TRUE.

ELSE

Has%PipeCircuit = .FALSE.

RETURN

END IF

ALLOCATE(PipeCircuit%PipeSegments (0: TrustMeNumPipes -1))

PipeSegmentCounter = 0

PipeCircuit%PipeSegments(PipeSegmentCounter)%FlowDirection = SegmentFlow_IncreasingZ

PipeCircuit%PipeSegments(PipeSegmentCounter)%PipeLocation = PointF (0.67 , Extents%Ymax - 2.20)

PipeSegmentCounter = PipeSegmentCounter + 1

PipeCircuit%PipeSegments(PipeSegmentCounter)%FlowDirection = SegmentFlow_IncreasingZ

PipeCircuit%PipeSegments(PipeSegmentCounter)%PipeLocation = PointF (0.95 , Extents%Ymax - 2.20)

PipeSegmentCounter = PipeSegmentCounter + 1

PipeCircuit%PipeSegments(PipeSegmentCounter)%FlowDirection = SegmentFlow_IncreasingZ

PipeCircuit%PipeSegments(PipeSegmentCounter)%PipeLocation = PointF (1.23 , Extents%Ymax - 2.20)

PipeSegmentCounter = PipeSegmentCounter + 1

PipeCircuit%PipeSegments(PipeSegmentCounter)%FlowDirection = SegmentFlow_DecreasingZ

PipeCircuit%PipeSegments(PipeSegmentCounter)%PipeLocation = PointF (1.40 , Extents%Ymax - 1.94)

PipeSegmentCounter = PipeSegmentCounter + 1

PipeCircuit%PipeSegments(PipeSegmentCounter)%FlowDirection = SegmentFlow_DecreasingZ

PipeCircuit%PipeSegments(PipeSegmentCounter)%PipeLocation = PointF (1.40 , Extents%Ymax - 1.66)

PipeSegmentCounter = PipeSegmentCounter + 1

PipeCircuit%PipeSegments(PipeSegmentCounter)%FlowDirection = SegmentFlow_DecreasingZ

PipeCircuit%PipeSegments(PipeSegmentCounter)%PipeLocation = PointF (1.40 , Extents%Ymax - 1.39)

RETURN

END SUBROUTINE

! ==================================================

! =========== Mesh Development routines ============

! ==================================================

SUBROUTINE DevelopMesh ()

TYPE(GridRegion), ALLOCATABLE , DIMENSION (:) :: XPartitionRegions

TYPE(GridRegion), ALLOCATABLE , DIMENSION (:) :: YPartitionRegions

TYPE(GridRegion), ALLOCATABLE , DIMENSION (:) :: ZPartitionRegions

TYPE(GridRegion), ALLOCATABLE , DIMENSION (:) :: XRegions

TYPE(GridRegion), ALLOCATABLE , DIMENSION (:) :: YRegions

TYPE(GridRegion), ALLOCATABLE , DIMENSION (:) :: ZRegions

REAL(r64), ALLOCATABLE , DIMENSION (:) :: XBoundaryPoints

REAL(r64), ALLOCATABLE , DIMENSION (:) :: YBoundaryPoints

REAL(r64), ALLOCATABLE , DIMENSION (:) :: ZBoundaryPoints

INTEGER :: RegionListCount

INTEGER :: BoundaryListCount

LOGICAL :: XPartitionsExist

LOGICAL :: YPartitionsExist

LOGICAL :: ZPartitionsExist

! ’****** LAYOUT PARTITIONS ****** ’

CALL CreatePartitionCenterList ()

IF (ALLOCATED(Partitions%X)) THEN

ALLOCATE(XPartitionRegions (0: UBOUND(Partitions%X,1)))

XPartitionsExist = .TRUE.

ELSE

ALLOCATE(XPartitionRegions (0:0))

ALLOCATE(Partitions%X(0:0))

XPartitionsExist = .FALSE.

END IF

XPartitionRegions = CreatePartitionRegionList(Partitions%X, DirectionPack(RegionType_XDirection),

XPartitionsExist , UBOUND(Partitions%X, 1))

IF (ALLOCATED(Partitions%Y)) THEN

ALLOCATE(YPartitionRegions (0: UBOUND(Partitions%Y,1)))

YPartitionsExist = .TRUE.

ELSE

ALLOCATE(YPartitionRegions (0:0))

ALLOCATE(Partitions%Y(0:0))

YPartitionsExist = .FALSE.

END IF

YPartitionRegions = CreatePartitionRegionList(Partitions%Y, DirectionPack(RegionType_YDirection),

YPartitionsExist , UBOUND(Partitions%Y, 1))

ZPartitionsExist = .FALSE.

! ’***** LAYOUT MESH REGIONS ***** ’

RegionListCount = CreateRegionListCount(XPartitionRegions , DirectionPack(RegionType_XDirection),

XPartitionsExist)

ALLOCATE(XRegions (0: RegionListCount -1))

XRegions = CreateRegionList(XPartitionRegions , DirectionPack(RegionType_XDirection), RegionListCount -1,

XPartitionsExist , BasementWallXIndex=BasementWallXIndex)
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RegionListCount = CreateRegionListCount(YPartitionRegions , DirectionPack(RegionType_YDirection),

YPartitionsExist)

ALLOCATE(YRegions (0: RegionListCount -1))

YRegions = CreateRegionList(YPartitionRegions , DirectionPack(RegionType_YDirection), RegionListCount -1,

YPartitionsExist , BasementFloorYIndex=BasementFloorYIndex)

RegionListCount = CreateRegionListCount(ZPartitionRegions , DirectionPack(RegionType_ZDirection),

ZPartitionsExist)

ALLOCATE(ZRegions (0: RegionListCount -1))

ZRegions = CreateRegionList(ZPartitionRegions , DirectionPack(RegionType_ZDirection), RegionListCount -1,

ZPartitionsExist)

! ’** MAKE REGIONS > BOUNDARIES **’

BoundaryListCount = CreateBoundaryListCount(XRegions , DirectionPack(RegionTYpe_XDirection))

ALLOCATE(XBoundaryPoints (0: BoundaryListCount -1))

XBoundaryPoints = CreateBoundaryList(XRegions , DirectionPack(RegionTYpe_XDirection), 0, BoundaryListCount

-1)

BoundaryListCount = CreateBoundaryListCount(YRegions , DirectionPack(RegionTYpe_YDirection))

ALLOCATE(YBoundaryPoints (0: BoundaryListCount -1))

YBoundaryPoints = CreateBoundaryList(YRegions , DirectionPack(RegionTYpe_YDirection), 0, BoundaryListCount

-1)

BoundaryListCount = CreateBoundaryListCount(ZRegions , DirectionPack(RegionTYpe_ZDirection))

ALLOCATE(ZBoundaryPoints (0: BoundaryListCount -1))

ZBoundaryPoints = CreateBoundaryList(ZRegions , DirectionPack(RegionTYpe_ZDirection), 0, BoundaryListCount

-1)

! ’****** DEVELOP CELL ARRAY ***** ’

CALL CreateCellArray(XBoundaryPoints , YBoundaryPoints , ZBoundaryPoints , BasementWallXIndex ,

BasementFloorYIndex)

! ’***** SETUP CELL NEIGHBORS **** ’

CALL SetupCellNeighbors ()

! ’** SET UP PIPE CIRCUIT CELLS **’

IF (Has%PipeCircuit) CALL SetupPipeCircuitInOutCells ()

IF(ALLOCATED(XPartitionRegions)) DEALLOCATE(XPartitionRegions)

IF(ALLOCATED(YPartitionRegions)) DEALLOCATE(YPartitionRegions)

IF(ALLOCATED(ZPartitionRegions)) DEALLOCATE(ZPartitionRegions)

IF(ALLOCATED(XRegions)) DEALLOCATE(XRegions)

IF(ALLOCATED(YRegions)) DEALLOCATE(YRegions)

IF(ALLOCATED(ZRegions)) DEALLOCATE(ZRegions)

IF(ALLOCATED(XBoundaryPoints)) DEALLOCATE(XBoundaryPoints)

IF(ALLOCATED(YBoundaryPoints)) DEALLOCATE(YBoundaryPoints)

IF(ALLOCATED(ZBoundaryPoints)) DEALLOCATE(ZBoundaryPoints)

RETURN

END SUBROUTINE

SUBROUTINE CreatePartitionCenterList ()

REAL(r64) :: BasementDistFromBottom

INTEGER :: PipeCtr

INTEGER :: PreviousUbound

TYPE(MeshPartition), ALLOCATABLE , DIMENSION (:) :: PreviousEntries

REAL(r64) :: PipeCellWidth

REAL(r64) :: SurfCellWidth !Basement surface ...

!the fraction of domain extent to use for the basement cells

!actual dimension shouldn ’t matter for calculation purposes

REAL(r64), PARAMETER :: BasementCellFraction = 0.001d0

IF (Has%PipeCircuit) THEN

IF (.NOT. Has%Insulation) THEN

PipeCellWidth = PipeCircuit%PipeSize%OuterDia

ELSE

PipeCellWidth = PipeCircuit%InsulationSize%OuterDia

END IF

PipeCellWidth = PipeCellWidth + 2 * Mesh%Radial%RadialMeshThickness

!’NOTE: pipe location y values have already been corrected to be measured from the bottom surface

!’in input they are measured by depth , but internally they are referred to by distance from y = 0, or

the bottom boundary

DO PipeCtr = LBOUND(PipeCircuit%PipeSegments , 1), UBOUND(PipeCircuit%PipeSegments , 1)

IF (.NOT. ALLOCATED(Partitions%X)) THEN

ALLOCATE(Partitions%X(0:0))

Partitions%X(0) = MeshPartition(PipeCircuit%PipeSegments(PipeCtr)%PipeLocation%X,

PartitionType_Pipe , PipeCellWidth)

ELSEIF (.NOT. MeshPartitionArray_Contains(Partitions%X, PipeCircuit%PipeSegments(PipeCtr)%

PipeLocation%X)) THEN

PreviousUbound = UBOUND(Partitions%X, 1)

IF (ALLOCATED(PreviousEntries)) DEALLOCATE(PreviousEntries)

ALLOCATE(PreviousEntries (0: PreviousUbound))

PreviousEntries = Partitions%X

DEALLOCATE(Partitions%X)

ALLOCATE(Partitions%X(0: PreviousUbound +1))

Partitions%X(0: PreviousUbound) = PreviousEntries
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Partitions%X(PreviousUbound + 1) = MeshPartition(PipeCircuit%PipeSegments(PipeCtr)%

PipeLocation%X, PartitionType_Pipe , PipeCellWidth)

END IF

IF (.NOT. ALLOCATED(Partitions%Y)) THEN

ALLOCATE(Partitions%Y(0:0))

Partitions%Y(0) = MeshPartition(PipeCircuit%PipeSegments(PipeCtr)%PipeLocation%Y,

PartitionType_Pipe , PipeCellWidth)

ELSEIF (.NOT. MeshPartitionArray_Contains(Partitions%Y, PipeCircuit%PipeSegments(PipeCtr)%

PipeLocation%Y)) THEN

PreviousUbound = UBOUND(Partitions%Y, 1)

IF (ALLOCATED(PreviousEntries)) DEALLOCATE(PreviousEntries)

ALLOCATE(PreviousEntries (0: PreviousUbound))

PreviousEntries = Partitions%Y

DEALLOCATE(Partitions%Y)

ALLOCATE(Partitions%Y(0: PreviousUbound +1))

Partitions%Y(0: PreviousUbound) = PreviousEntries

Partitions%Y(PreviousUbound + 1) = MeshPartition(PipeCircuit%PipeSegments(PipeCtr)%

PipeLocation%Y, PartitionType_Pipe , PipeCellWidth)

END IF

END DO

END IF

IF (Has%Basement) THEN

!’NOTE: the basement depth is still a depth from the ground surface , need to correct this here

IF (BasementZone%Width > 0) THEN

SurfCellWidth = Extents%Xmax * BasementCellFraction

IF (.NOT. ALLOCATED(Partitions%X)) THEN

ALLOCATE(Partitions%X(0:0))

Partitions%X(0) = MeshPartition(BasementZone%Width , PartitionType_BasementWall , SurfCellWidth

)

ELSEIF (.NOT. MeshPartitionArray_Contains(Partitions%X, BasementZone%Width)) THEN

PreviousUbound = UBOUND(Partitions%X, 1)

IF (ALLOCATED(PreviousEntries)) DEALLOCATE(PreviousEntries)

ALLOCATE(PreviousEntries (0: PreviousUbound))

PreviousEntries = Partitions%X

DEALLOCATE(Partitions%X)

ALLOCATE(Partitions%X(0: PreviousUbound +1))

Partitions%X(0: PreviousUbound) = PreviousEntries

Partitions%X(PreviousUbound + 1) = MeshPartition(BasementZone%Width ,

PartitionType_BasementWall , SurfCellWidth)

END IF

END IF

IF (BasementZone%Depth > 0) THEN

SurfCellWidth = Extents%Ymax * BasementCellFraction

BasementDistFromBottom = Extents%Ymax - BasementZone%Depth

IF (.NOT. ALLOCATED(Partitions%Y)) THEN

ALLOCATE(Partitions%Y(0:0))

Partitions%Y(0) = MeshPartition(BasementDistFromBottom , PartitionType_BasementFloor ,

SurfCellWidth)

ELSEIF (.NOT. MeshPartitionArray_Contains(Partitions%Y, BasementDistFromBottom)) THEN

PreviousUbound = UBOUND(Partitions%Y, 1)

IF (ALLOCATED(PreviousEntries)) DEALLOCATE(PreviousEntries)

ALLOCATE(PreviousEntries (0: PreviousUbound))

PreviousEntries = Partitions%Y

DEALLOCATE(Partitions%Y)

ALLOCATE(Partitions%Y(0: PreviousUbound +1))

Partitions%Y(0: PreviousUbound) = PreviousEntries

Partitions%Y(PreviousUbound + 1) = MeshPartition(BasementDistFromBottom ,

PartitionType_BasementFloor , SurfCellWidth)

END IF

END IF

END IF

CALL MeshPartition_SelectionSort(Partitions%X)

CALL MeshPartition_SelectionSort(Partitions%Y)

END SUBROUTINE

FUNCTION CreatePartitionRegionList(ThesePartitionCenters , Dir , PartitionsExist , PartitionsUBound) RESULT(

ThesePartitionRegions)

TYPE(MeshPartition), ALLOCATABLE , DIMENSION (:), INTENT(IN) :: ThesePartitionCenters

TYPE(DirectionPackage), INTENT(IN) :: Dir

INTEGER , INTENT(IN) :: PartitionsUbound

LOGICAL , INTENT(IN) :: PartitionsExist

TYPE(GridRegion), DIMENSION (0: PartitionsUBound) :: ThesePartitionRegions

REAL(r64) :: PipeCellWidthBy2

REAL(r64) :: PipeCellWidth

INTEGER :: Index

REAL(r64) :: ThisCellWidthBy2

INTEGER :: ThisPartitionType !From Enum: RegionType

REAL(r64) :: CellLeft

REAL(r64) :: CellRight

INTEGER :: PreviousUbound

TYPE(GridRegion), ALLOCATABLE , DIMENSION (:) :: PreviousEntries

IF (.NOT. PartitionsExist) THEN

RETURN

END IF

!’loop across all partitions

259



DO Index = LBOUND(ThesePartitionCenters , 1), UBOUND(ThesePartitionCenters , 1)

!retrieve a cell half -width and a partition type

ThisCellWidthBy2 = ThesePartitionCenters(Index)%TotalWidth / 2.0d0

ThisPartitionType = ThesePartitionCenters(Index)%PartitionType

!’use this half width to validate the region and add it to the collection

CellLeft = ThesePartitionCenters(Index)%rDimension - ThisCellWidthBy2

CellRight = ThesePartitionCenters(Index)%rDimension + ThisCellWidthBy2

ThesePartitionRegions(Index)%Min = CellLeft

ThesePartitionRegions(Index)%Max = CellRight

!Need to map partition type into region type parameters , since they are different enumerations

SELECT CASE (ThisPartitionType)

CASE (PartitionType_BasementWall)

ThesePartitionRegions(Index)%RegionType = RegionType_BasementWall

CASE (PartitionType_BasementFloor)

ThesePartitionRegions(Index)%RegionType = RegionType_BasementFloor

CASE (PartitionType_Pipe)

ThesePartitionRegions(Index)%RegionType = RegionType_Pipe

CASE DEFAULT

! diagnostic error

END SELECT

END DO

RETURN

END FUNCTION

INTEGER FUNCTION CreateRegionListCount(ThesePartitionRegions , Dir , PartitionsExist) RESULT(RetVal)

TYPE(GridRegion), ALLOCATABLE , DIMENSION (:), INTENT(IN) :: ThesePartitionRegions

TYPE(DirectionPackage), INTENT(IN) :: Dir

LOGICAL , INTENT(IN) :: PartitionsExist

INTEGER :: Index

RetVal = 0

IF (PartitionsExist) THEN

DO Index = LBOUND(ThesePartitionRegions ,1), UBOUND(ThesePartitionRegions ,1)

!’add a mesh region to the "left" of the partition

RetVal = RetVal + 1

!’then add the pipe node itself

RetVal = RetVal + 1

!some cleanup based on where we are

IF ((Index ==0 .AND. SIZE(ThesePartitionRegions)==1) .OR. &

(Index == UBOUND(ThesePartitionRegions ,1) .AND. ThesePartitionRegions(Index)%Max < Dir%

ExtentMax)) THEN

!’if there is only one partition , add a mesh region to the "right" before we leave

!’or if we are on the last partition , and we have room on the "right" side then add a mesh

region

RetVal = RetVal + 1

END IF

END DO

ELSE !Input partitions were not allocate

!’if we don ’t have a region , we still need to make a single mesh region

RetVal = RetVal + 1

END IF

RETURN

END FUNCTION

FUNCTION CreateRegionList(ThesePartitionRegions , Dir , RetValUbound , PartitionsExist , BasementWallXIndex ,

BasementFloorYIndex) RESULT(RetVal)

TYPE(GridRegion), ALLOCATABLE , DIMENSION (:), INTENT(IN) :: ThesePartitionRegions

TYPE(DirectionPackage), INTENT(IN) :: Dir

INTEGER , INTENT(IN) :: RetValUBound

LOGICAL , INTENT(IN) :: PartitionsExist

INTEGER , INTENT(IN OUT), OPTIONAL :: BasementWallXIndex

INTEGER , INTENT(IN OUT), OPTIONAL :: BasementFloorYIndex

TYPE(GridRegion), DIMENSION (0: RetValUbound) :: RetVal

TYPE(TempGridRegionData), DIMENSION (0: RetValUbound) :: TempRegions

TYPE(GridRegion) :: ThisRegion

TYPE(GridRegion) :: TempRegion

TYPE(TempGridRegionData) :: PreviousRegion

REAL(r64) :: LeftRegionExtent

INTEGER :: PreviousUbound

INTEGER :: Index

INTEGER :: SubIndex

INTEGER :: CellCountUpToNow

INTEGER :: NumCellWidths

PreviousUbound = -1

IF (PartitionsExist) THEN

DO Index = LBOUND(ThesePartitionRegions ,1), UBOUND(ThesePartitionRegions ,1)

ThisRegion = ThesePartitionRegions(Index)
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IF (Index == 0) THEN

LeftRegionExtent = 0.0

ELSE

LeftRegionExtent = ThesePartitionRegions(Index - 1)%Max

END IF

!’add a mesh region to the "left" of the partition

PreviousUbound = PreviousUbound + 1

TempRegions(PreviousUbound) = TempGridRegionData(LeftRegionExtent , ThisRegion%Min , Dir%Direction)

!’alert calling routines to the location of the basement cells within the domain

CellCountUpToNow = 0

DO SubIndex = LBOUND(TempRegions ,1), PreviousUbound

PreviousRegion = TempRegions(SubIndex)

SELECT CASE (PreviousRegion%RegionType)

CASE (RegionType_Pipe , RegionType_BasementFloor , RegionType_BasementWall)

CellCountUpToNow = CellCountUpToNow + 1

CASE DEFAULT

CellCountUpToNow = CellCountUpToNow + GetCellWidthsCount(Dir%Direction)

END SELECT

END DO

IF (ThisRegion%RegionType == RegionType_BasementWall) THEN

IF (PRESENT(BasementWallXIndex)) BasementWallXIndex = CellCountUpToNow

ELSEIF (ThisRegion%RegionType == RegionType_BasementFloor) THEN

IF (PRESENT(BasementFloorYIndex)) BasementFloorYIndex = CellCountUpToNow

END IF

!’then add the pipe node itself

PreviousUbound = PreviousUbound + 1

TempRegions(PreviousUbound) = TempGridRegionData(ThisRegion%Min , ThisRegion%Max , ThisRegion%

RegionType)

!some cleanup based on where we are

IF ((Index ==0 .AND. SIZE(ThesePartitionRegions)==1) .OR. &

(Index == UBOUND(ThesePartitionRegions ,1) .AND. ThisRegion%Max < Dir%ExtentMax)) THEN

!’if there is only one partition , add a mesh region to the "right" before we leave

!’or if we are on the last partition , and we have room on the "right" side then add a mesh

region

PreviousUbound = PreviousUbound + 1

TempRegions(PreviousUbound) = TempGridRegionData(ThisRegion%Max , Dir%ExtentMax , Dir%Direction

)

END IF

END DO

ELSE !Input partitions were not allocate

!’if we don ’t have a region , we still need to make a single mesh region

TempRegions (0) = TempGridRegionData (0.0, Dir%ExtentMax , Dir%Direction)

END IF

!’finally repackage the grid regions into the final class form with cell counts included

DO Index = LBOUND(TempRegions ,1), UBOUND(TempRegions ,1)

RetVal(Index)%Min = TempRegions(Index)%Min

RetVal(Index)%Max = TempRegions(Index)%Max

RetVal(Index)%RegionType = TempRegions(Index)%RegionType

NumCellWidths = GetCellWidthsCount(Dir%Direction)

IF (ALLOCATED(RetVal(Index)%CellWidths)) DEALLOCATE(RetVal(Index)%CellWidths)

ALLOCATE (RetVal(Index)%CellWidths (0: NumCellWidths -1))

CALL GetCellWidths(RetVal(Index))

END DO

RETURN

END FUNCTION

INTEGER FUNCTION CreateBoundaryListCount(RegionList , dir) RESULT(RetVal)

TYPE(GridRegion), ALLOCATABLE , DIMENSION (:), INTENT(IN) :: RegionList

TYPE(DirectionPackage) :: dir

INTEGER :: Index

INTEGER :: CellWidthCtr

RetVal = 0

DO Index = LBOUND(RegionList ,1), UBOUND(RegionList ,1)

SELECT CASE (RegionList(Index)%RegionType)

CASE (RegionType_Pipe , RegionType_BasementFloor , RegionType_BasementWall)

RetVal = RetVal + 1

CASE DEFAULT

IF (RegionList(Index)%RegionType == dir%Direction) THEN

DO CellWidthCtr = LBOUND(RegionList(Index)%CellWidths ,1), UBOUND(RegionList(Index)%CellWidths

,1)

RetVal = RetVal + 1

END DO

END IF

END SELECT

END DO

RetVal = RetVal + 1

RETURN

END FUNCTION

FUNCTION CreateBoundaryList(RegionList , dir , RetValLbound , RetValUbound) RESULT(RetVal)
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TYPE(GridRegion), ALLOCATABLE , DIMENSION (:), INTENT(IN) :: RegionList

TYPE(DirectionPackage) :: dir

INTEGER , INTENT(IN) :: RetValLbound

INTEGER , INTENT(IN) :: RetValUbound

REAL(r64) :: RetVal(RetValLbound:RetValUbound)

REAL(r64) :: StartingPointCounter

INTEGER :: Index

INTEGER :: Counter

INTEGER :: CellWidthCtr

Counter = -1

DO Index = LBOUND(RegionList ,1), UBOUND(RegionList ,1)

SELECT CASE (RegionList(Index)%RegionType)

CASE (RegionType_Pipe , RegionType_BasementFloor , RegionType_BasementWall)

Counter = Counter + 1

RetVal(Counter) = RegionList(Index)%Min

CASE DEFAULT

IF (RegionList(Index)%RegionType == dir%Direction) THEN

StartingPointCounter = RegionList(Index)%Min

DO CellWidthCtr = LBOUND(RegionList(Index)%CellWidths ,1), UBOUND(RegionList(Index)%CellWidths

,1)

Counter = Counter + 1

RetVal(Counter) = StartingPointCounter

StartingPointCounter = StartingPointCounter + RegionList(Index)%CellWidths(CellWidthCtr)

END DO

END IF

END SELECT

END DO

RetVal(UBOUND(RetVal ,1)) = dir%ExtentMax

RETURN

END FUNCTION

SUBROUTINE CreateCellArray(XBoundaryPoints , YBoundaryPoints , ZBoundaryPoints , MaxBasementXNodeIndex ,

MinBasementYNodeIndex)

TYPE tCellExtents

TYPE(MeshExtents) :: MyBase

REAL(r64) :: Xmin

REAL(r64) :: Ymin

REAL(r64) :: Zmin

END TYPE tCellExtents

REAL(r64), ALLOCATABLE , DIMENSION (:), INTENT(IN) :: XBoundaryPoints

REAL(r64), ALLOCATABLE , DIMENSION (:), INTENT(IN) :: YBoundaryPoints

REAL(r64), ALLOCATABLE , DIMENSION (:), INTENT(IN) :: ZBoundaryPoints

INTEGER , INTENT(IN) :: MaxBasementXNodeIndex

INTEGER , INTENT(IN) :: MinBasementYNodeIndex

INTEGER :: YIndexMax

TYPE(DomainRectangle) :: BasementRectangle

TYPE(tCellExtents) :: CellExtents

TYPE(Point3DReal) :: Centroid

TYPE(Point3DInteger) :: CellIndeces

TYPE(RectangleF) :: XYRectangle

INTEGER :: CellType !From Enum: CellType

INTEGER :: ZWallCellType !From Enum: CellType

INTEGER :: UnderBasementBoundary !From Enum: CellType

INTEGER :: PipeCounter

INTEGER :: X

INTEGER :: CellXIndex

REAL(r64) :: CellXMinValue

REAL(r64) :: CellXMaxValue

REAL(r64) :: CellXCenter

REAL(r64) :: CellWidth

INTEGER :: Y

INTEGER :: CellYIndex

REAL(r64) :: CellYMinValue

REAL(r64) :: CellYMaxValue

REAL(r64) :: CellYCenter

REAL(r64) :: CellHeight

INTEGER :: Z

INTEGER :: CellZIndex

REAL(r64) :: CellZMinValue

REAL(r64) :: CellZMaxValue

REAL(r64) :: CellZCenter

REAL(r64) :: CellDepth

INTEGER :: PipeIndex

INTEGER :: NumRadialCells

REAL(r64) :: InsulationThickness

!’subtract 2 in each dimension:

!’ one for zero based array

!’ one because the boundary points contain one entry more than the number of cells WITHIN the domain

ALLOCATE(Cells (0: SIZE(XBoundaryPoints) - 2, 0:SIZE(YBoundaryPoints) - 2, 0:SIZE(ZBoundaryPoints) - 2))
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YIndexMax = UBOUND(Cells , 2)

BasementRectangle = DomainRectangle (0, MaxBasementXNodeIndex , MinBasementYNodeIndex , YIndexMax)

DO Z = LBOUND(Cells ,3), UBOUND(Cells ,3)

DO Y = LBOUND(Cells ,2), UBOUND(Cells ,2)

DO X = LBOUND(Cells ,1), UBOUND(Cells ,1)

!’set up x- direction variables

CellXIndex = X !’zero based index

CellXMinValue = XBoundaryPoints(X) !’left wall x-value

CellXMaxValue = XBoundaryPoints(X + 1) !’right wall x-value

CellXCenter = (CellXMinValue + CellXMaxValue) / 2

CellWidth = CellXMaxValue - CellXMinValue

!’set up y- direction variables

CellYIndex = Y !’zero based index

CellYMinValue = YBoundaryPoints(Y) !’bottom wall y-value

CellYMaxValue = YBoundaryPoints(Y + 1) !’top wall y-value

CellYCenter = (CellYMinValue + CellYMaxValue) / 2

CellHeight = CellYMaxValue - CellYMinValue

!’set up z- direction variables

CellZIndex = Z !’zero based index

CellZMinValue = ZBoundaryPoints(Z) !’lower z value

CellZMaxValue = ZBoundaryPoints(Z + 1) !’higher z value

CellZCenter = (CellZMinValue + CellZMaxValue) / 2

CellDepth = CellZMaxValue - CellZMinValue

!’set up an extent class for this cell

CellExtents = tCellExtents(MeshExtents(CellXMaxValue , CellYMaxValue , CellZMaxValue),

CellXMinValue , CellYMinValue , CellZMinValue)

!’set up centroid , index , and overall size

Centroid = Point3DReal(CellXCenter , CellYCenter , CellZCenter)

CellIndeces = Point3DInteger(CellXIndex , CellYIndex , CellZIndex)

XYRectangle = RectangleF(CellXMinValue , CellYMinValue , CellWidth , CellHeight)

!’determine cell type

CellType = CellType_Unknown

!’if this is a pipe node , some flags are needed

PipeIndex = -1

NumRadialCells = -1

!’set up a z-pointer cell type variable

IF (Mesh%Z%BoundaryType == BoundaryType_Adiabatic) THEN

ZWallCellType = CellType_AdiabaticWall

ELSEIF (Mesh%Z%BoundaryType == BoundaryType_Farfield) THEN

ZWallCellType = CellType_FarfieldBoundary

END IF

IF (Has%Basement) THEN

IF (BasementZone%UnderBasementBoundaryType == BoundaryType_Adiabatic) THEN

UnderBasementBoundary = CellType_AdiabaticWall

ELSEIF (BasementZone%UnderBasementBoundaryType == BoundaryType_Farfield) THEN

UnderBasementBoundary = CellType_FarfieldBoundary

END IF

END IF

!’apply boundary conditions

IF (CellXIndex == MaxBasementXNodeIndex .AND. CellYIndex == MinBasementYNodeIndex) THEN

CellType = CellType_BasementCorner

ELSE IF (CellXIndex == MaxBasementXNodeIndex .AND. CellYIndex > MinBasementYNodeIndex) THEN

CellType = CellType_BasementWall

ELSE IF (CellXIndex < MaxBasementXNodeIndex .AND. CellYIndex == MinBasementYNodeIndex) THEN

CellType = CellType_BasementFloor

ELSE IF (CellXIndex < MaxBasementXNodeIndex .AND. CellYIndex > MinBasementYNodeIndex) THEN

CellType = CellType_BasementCutAway

ELSE IF (CellYIndex == UBOUND(Cells ,2)) THEN

CellType = CellType_GroundSurface

ELSE IF (CellXIndex == 0) THEN

IF (Has%Basement .AND. Y>0) THEN

CellType = UnderBasementBoundary !’this must come after the basement cutaway ELSEIF

branch

ELSE

CellType = CellType_FarfieldBoundary

END IF

ELSE IF (CellXIndex == UBOUND(Cells ,1) .OR. CellYIndex == 0) THEN

CellType = CellType_FarfieldBoundary

ELSE IF (CellZIndex == 0 .OR. CellZIndex == UBOUND(Cells ,3)) THEN

CellType = ZWallCellType

END IF

!’check to see if this is a pipe node ...

IF (Has%PipeCircuit) THEN

DO PipeCounter = LBOUND(PipeCircuit%PipeSegments ,1), UBOUND(PipeCircuit%PipeSegments ,1)

IF (RectangleF_Contains(XYRectangle , PipeCircuit%PipeSegments(PipeCounter)%

PipeLocation)) THEN

!’inform the cell that it is a pipe node

CellType = CellType_Pipe

!’inform the cell of which pipe it contains

PipeIndex = PipeCounter
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!’inform the pipe of what cell it is inside

CALL PipeSegmentInfo_InitPipeCells(PipeCircuit%PipeSegments(PipeCounter),

CellXIndex , CellYIndex)

!’set the number of cells to be generated in this near -pipe region

NumRadialCells = Mesh%Radial%NumRadialCells

!’exit the pipe counter loop

EXIT

END IF

END DO

END IF

!’if it still isn ’t anything , then it is just an interior node

IF (CellType == CellType_Unknown) THEN

CellType = CellType_GeneralField

END IF

IF (Has%Insulation) THEN

InsulationThickness = RadialSizing_Thickness(PipeCircuit%InsulationSize)

END IF

!’instantiate the cell class

Cells(X, Y, Z)%X_min = CellExtents%Xmin

Cells(X, Y, Z)%X_max = CellExtents%MyBase%Xmax

Cells(X, Y, Z)%Y_min = CellExtents%Ymin

Cells(X, Y, Z)%Y_max = CellExtents%MyBase%Ymax

Cells(X, Y, Z)%Z_min = CellExtents%Zmin

Cells(X, Y, Z)%Z_max = CellExtents%MyBase%Zmax

Cells(X, Y, Z)%X_index = CellIndeces%X

Cells(X, Y, Z)%Y_index = CellIndeces%Y

Cells(X, Y, Z)%Z_index = CellIndeces%Z

Cells(X, Y, Z)%Centroid = Centroid

Cells(X, Y, Z)%CellType = CellType

IF (PipeIndex .NE. -1) THEN

Cells(X, Y, Z)%PipeIndex = PipeIndex

CALL CartesianPipeCellInformation_ctor(Cells(X, Y, Z)%PipeCellData , Cells(X, Y, Z)%X_max

- Cells(X, Y, Z)%X_min , PipeCircuit%PipeSize , NumRadialCells , Depth(Cells(X, Y, Z)),

InsulationThickness , Mesh%Radial%RadialMeshThickness , Has%Insulation)

END IF

END DO !’z

END DO !’y

END DO !’x

END SUBROUTINE

SUBROUTINE SetupCellNeighbors ()

INTEGER :: X, Y, Z

REAL(r64) :: ThisCellCentroidX

REAL(r64) :: ThisCellCentroidY

REAL(r64) :: ThisCellCentroidZ

REAL(r64) :: CellRightCentroidX

REAL(r64) :: CellRightLeftWallX

REAL(r64) :: CellLeftCentroidX

REAL(r64) :: CellLeftRightWallX

REAL(r64) :: LeftCellCentroidX

REAL(r64) :: LeftCellRightWallX

REAL(r64) :: RightCellCentroidX

REAL(r64) :: RightCellLeftWallX

REAL(r64) :: UpperCellCentroidY

REAL(r64) :: UpperCellLowerWallY

REAL(r64) :: LowerCellCentroidY

REAL(r64) :: LowerCellUpperWallY

REAL(r64) :: UpperZCellCentroidZ

REAL(r64) :: UpperZCellLowerWallZ

REAL(r64) :: LowerZCellCentroidZ

REAL(r64) :: LowerZCellUpperWallZ

DO Z = 0, UBOUND(Cells , 3)

DO Y = 0, UBOUND(Cells , 2)

DO X = 0, UBOUND(Cells , 1)

!’for convenience

ThisCellCentroidX = Cells(X, Y, Z)%Centroid%X

ThisCellCentroidY = Cells(X, Y, Z)%Centroid%Y

ThisCellCentroidZ = Cells(X, Y, Z)%Centroid%Z

!’setup east/west cell neighbors

IF (X == 0) THEN !’we have a left boundary , set east cell neighbor only

CellRightCentroidX = Cells(X + 1, Y, Z)%Centroid%X

CellRightLeftWallX = Cells(X + 1, Y, Z)%X_min

CALL AddNeighborInformation(X, Y, Z, Direction_PositiveX , CellRightCentroidX -

ThisCellCentroidX , CellRightLeftWallX - ThisCellCentroidX , CellRightCentroidX -

CellRightLeftWallX)

CALL AddNeighborInformation(X, Y, Z, Direction_NegativeX , 0.0d0, 0.0d0, 0.0d0)

ELSE IF (X == UBOUND(Cells ,1)) THEN !’we have a right bndy , set west cell neighbor only

CellLeftCentroidX = Cells(X - 1, Y, Z)%Centroid%X

CellLeftRightWallX = Cells(X - 1, Y, Z)%X_max
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CALL AddNeighborInformation(X, Y, Z, Direction_NegativeX , ThisCellCentroidX -

CellLeftCentroidX , ThisCellCentroidX - CellLeftRightWallX , CellLeftRightWallX -

CellLeftCentroidX)

CALL AddNeighborInformation(X, Y, Z, Direction_PositiveX , 0.0d0, 0.0d0, 0.0d0)

ELSE !’we have an internal node , set east/west cell neighbors

LeftCellCentroidX = Cells(X - 1, Y, Z)%Centroid%X

LeftCellRightWallX = Cells(X - 1, Y, Z)%X_max

RightCellCentroidX = Cells(X + 1, Y, Z)%Centroid%X

RightCellLeftWallX = Cells(X + 1, Y, Z)%X_min

CALL AddNeighborInformation(X, Y, Z, Direction_NegativeX , ThisCellCentroidX -

LeftCellCentroidX , ThisCellCentroidX - LeftCellRightWallX , LeftCellRightWallX -

LeftCellCentroidX)

CALL AddNeighborInformation(X, Y, Z, Direction_PositiveX , RightCellCentroidX -

ThisCellCentroidX , RightCellLeftWallX - ThisCellCentroidX , RightCellCentroidX -

RightCellLeftWallX)

END IF

!’setup north/south cell neighbors

IF (Y == 0) THEN !’we have a lower boundary , set north cell neighbor only

UpperCellCentroidY = Cells(X, Y + 1, Z)%Centroid%Y

UpperCellLowerWallY = Cells(X, Y + 1, Z)%Y_min

CALL AddNeighborInformation(X, Y, Z, Direction_PositiveY , UpperCellCentroidY -

ThisCellCentroidY , UpperCellLowerWallY - ThisCellCentroidY , UpperCellCentroidY -

UpperCellLowerWallY)

CALL AddNeighborInformation(X, Y, Z, Direction_NegativeY , 0.0d0, 0.0d0, 0.0d0)

ELSE IF (Y == UBOUND(Cells , 2)) THEN !’we have an upper bndy , set lower cell neighbor only

LowerCellCentroidY = Cells(X, Y - 1, Z)%Centroid%Y

LowerCellUpperWallY = Cells(X, Y - 1, Z)%Y_max

CALL AddNeighborInformation(X, Y, Z, Direction_NegativeY , ThisCellCentroidY -

LowerCellCentroidY , ThisCellCentroidY - LowerCellUpperWallY , LowerCellUpperWallY -

LowerCellCentroidY)

CALL AddNeighborInformation(X, Y, Z, Direction_PositiveY , 0.0d0, 0.0d0, 0.0d0)

ELSE !’we have an internal node , set north/south cell neighbors

UpperCellCentroidY = Cells(X, Y + 1, Z)%Centroid%Y

LowerCellCentroidY = Cells(X, Y - 1, Z)%Centroid%Y

UpperCellLowerWallY = Cells(X, Y + 1, Z)%Y_min

LowerCellUpperWallY = Cells(X, Y - 1, Z)%Y_max

CALL AddNeighborInformation(X, Y, Z, Direction_NegativeY , ThisCellCentroidY -

LowerCellCentroidY , ThisCellCentroidY - LowerCellUpperWallY , LowerCellUpperWallY -

LowerCellCentroidY)

CALL AddNeighborInformation(X, Y, Z, Direction_PositiveY , UpperCellCentroidY -

ThisCellCentroidY , UpperCellLowerWallY - ThisCellCentroidY , UpperCellCentroidY -

UpperCellLowerWallY)

END IF

!’setup forward/backward cell neighbors

IF (Z==0) THEN !’we have a "lower" boundary , set forward cell neighbor only

UpperZCellCentroidZ = Cells(X, Y, Z + 1)%Centroid%Z

UpperZCellLowerWallZ = Cells(X, Y, Z + 1)%Z_min

CALL AddNeighborInformation(X, Y, Z, Direction_PositiveZ , UpperZCellCentroidZ -

ThisCellCentroidZ , UpperZCellLowerWallZ - ThisCellCentroidZ , UpperZCellCentroidZ -

UpperZCellLowerWallZ)

CALL AddNeighborInformation(X, Y, Z, Direction_NegativeZ , 0.0d0, 0.0d0, 0.0d0)

ELSE IF (Z == UBOUND(Cells ,3)) THEN !’we have an "upper" bndy , set "lower" cell neighbor only

LowerZCellCentroidZ = Cells(X, Y, Z - 1)%Centroid%Z

LowerZCellUpperWallZ = Cells(X, Y, Z - 1)%Z_max

CALL AddNeighborInformation(X, Y, Z, Direction_NegativeZ , ThisCellCentroidZ -

LowerZCellCentroidZ , ThisCellCentroidZ - LowerZCellUpperWallZ , LowerZCellUpperWallZ

- LowerZCellCentroidZ)

CALL AddNeighborInformation(X, Y, Z, Direction_PositiveZ , 0.0d0, 0.0d0, 0.0d0)

ELSE

LowerZCellCentroidZ = Cells(X, Y, Z - 1)%Centroid%Z

UpperZCellCentroidZ = Cells(X, Y, Z + 1)%Centroid%Z

UpperZCellLowerWallZ = Cells(X, Y, Z + 1)%Z_min

LowerZCellUpperWallZ = Cells(X, Y, Z - 1)%Z_max

CALL AddNeighborInformation(X, Y, Z, Direction_NegativeZ , ThisCellCentroidZ -

LowerZCellCentroidZ , ThisCellCentroidZ - LowerZCellUpperWallZ , LowerZCellUpperWallZ

- LowerZCellCentroidZ)

CALL AddNeighborInformation(X, Y, Z, Direction_PositiveZ , UpperZCellCentroidZ -

ThisCellCentroidZ , UpperZCellLowerWallZ - ThisCellCentroidZ , UpperZCellCentroidZ -

UpperZCellLowerWallZ)

END IF

END DO

END DO

END DO

END SUBROUTINE

SUBROUTINE AddNeighborInformation(X, Y, Z, Direction , ThisCentroidToNeighborCentroid ,

ThisCentroidToNeighborWall , ThisWallToNeighborCentroid)

INTEGER , INTENT(IN) :: X

INTEGER , INTENT(IN) :: Y

INTEGER , INTENT(IN) :: Z

INTEGER , INTENT(IN) :: Direction !From Enum: Direction

REAL(r64), INTENT(IN) :: ThisCentroidToNeighborCentroid

REAL(r64), INTENT(IN) :: ThisCentroidToNeighborWall

REAL(r64), INTENT(IN) :: ThisWallToNeighborCentroid

TYPE(DirectionNeighbor_Dictionary), ALLOCATABLE , DIMENSION (:) :: PrevValues

INTEGER :: PrevUbound
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IF (.NOT. ALLOCATED(Cells(X,Y,Z)%NeighborInformation)) THEN

ALLOCATE(Cells(X,Y,Z)%NeighborInformation (0:0))

PrevUBound = -1

ELSE

PrevUbound = UBOUND(Cells(X,Y,Z)%NeighborInformation , 1)

ALLOCATE(PrevValues (0: PrevUbound))

PrevValues = Cells(X,Y,Z)%NeighborInformation

DEALLOCATE(Cells(X,Y,Z)%NeighborInformation)

ALLOCATE(Cells(X,Y,Z)%NeighborInformation (0: PrevUbound +1))

Cells(X,Y,Z)%NeighborInformation (0: PrevUbound) = PrevValues

END IF

Cells(X,Y,Z)%NeighborInformation(PrevUbound +1)%Direction = Direction

Cells(X,Y,Z)%NeighborInformation(PrevUbound +1)%Value%ThisCentroidToNeighborCentroid =

ThisCentroidToNeighborCentroid

Cells(X,Y,Z)%NeighborInformation(PrevUbound +1)%Value%ThisCentroidToNeighborWall =

ThisCentroidToNeighborWall

Cells(X,Y,Z)%NeighborInformation(PrevUbound +1)%Value%ThisWallToNeighborCentroid =

ThisWallToNeighborCentroid

RETURN

END SUBROUTINE

SUBROUTINE SetupPipeCircuitInOutCells ()

LOGICAL :: CircuitInletCellSet

TYPE(CartesianCell) :: CircuitInletCell

TYPE(CartesianCell) :: CircuitOutletCell

TYPE(CartesianCell) :: SegmentInletCell

TYPE(CartesianCell) :: SegmentOutletCell

TYPE(PipeSegmentInfo) :: Segment

INTEGER :: SegmentCtr

CircuitInletCellSet = .FALSE.

DO SegmentCtr = LBOUND(PipeCircuit%PipeSegments , 1), UBOUND(PipeCircuit%PipeSegments , 1)

Segment = PipeCircuit%PipeSegments(SegmentCtr)

SELECT CASE (Segment%FlowDirection)

CASE (SegmentFlow_IncreasingZ)

SegmentInletCell = Cells(segment%PipeCellCoordinates%X, segment%PipeCellCoordinates%Y, 0)

SegmentOutletCell = Cells(segment%PipeCellCoordinates%X, segment%PipeCellCoordinates%Y,

UBOUND(Cells , 3))

CASE (SegmentFlow_DecreasingZ)

SegmentInletCell = Cells(segment%PipeCellCoordinates%X, segment%PipeCellCoordinates%Y, UBOUND

(Cells , 3))

SegmentOutletCell = Cells(segment%PipeCellCoordinates%X, segment%PipeCellCoordinates%Y, 0)

END SELECT

IF (.NOT. CircuitInletCellSet) THEN

CircuitInletCell = SegmentInletCell

CircuitInletCellSet = .TRUE.

END IF

CircuitOutletCell = SegmentOutletCell

END DO

CALL PipeCircuitInfo_InitInOutCells(PipeCircuit , Cells(CircuitInletCell%X_index , CircuitInletCell%Y_index

, CircuitInletCell%Z_index), Cells(CircuitOutletCell%X_index , CircuitOutletCell%Y_index ,

CircuitOutletCell%Z_index))

END SUBROUTINE

INTEGER FUNCTION GetCellWidthsCount(dir) RESULT(RetVal)

INTEGER , INTENT(IN) :: dir !From Enum: RegionType

SELECT CASE (dir)

CASE (RegionType_XDirection)

RetVal = Mesh%X%RegionMeshCount

CASE (RegionType_YDirection)

RetVal = Mesh%Y%RegionMeshCount

CASE (RegionType_ZDirection)

RetVal = Mesh%Z%RegionMeshCount

END SELECT

RETURN

END FUNCTION

SUBROUTINE GetCellWidths(g)

TYPE(GridRegion), INTENT(IN OUT) :: g

REAL(r64), ALLOCATABLE , DIMENSION (:) :: RetVal

TYPE(DistributionStructure) :: ThisMesh

REAL(r64) :: GridWidth

INTEGER :: NumCellsOnEachSide

REAL(r64) :: SummationTerm

INTEGER :: I

REAL(r64) :: CellWidth

INTEGER :: SubIndex

!’determine which mesh "direction " we are going to be using

SELECT CASE (g%RegionType)

CASE (RegionType_XDirection)

ThisMesh = Mesh%X
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CASE (RegionType_YDirection)

ThisMesh = Mesh%Y

CASE (RegionType_ZDirection)

ThisMesh = Mesh%Z

CASE DEFAULT

!Error

END SELECT

ALLOCATE(RetVal (0: ThisMesh%RegionMeshCount -1))

GridWidth = g%Max - g%Min

IF (ThisMesh%MeshDistribution == MeshDistribution_Uniform) THEN

!we have it quite simple

CellWidth = GridWidth / ThisMesh%RegionMeshCount

DO I = 0, ThisMesh%RegionMeshCount - 1

RetVal(I) = CellWidth

END DO

ELSEIF (ThisMesh%MeshDistribution == MeshDistribution_SymmetricGeometric) THEN

!’then apply this " direction"’s conditions to generate a cell width array

!’first get the total number of cells on this half of the region

NumCellsOnEachSide = ThisMesh%RegionMeshCount / 2 !Already validated to be an even #

!’calculate geometric series

SummationTerm = 0.0d0

DO I = 1, NumCellsOnEachSide

SummationTerm = SummationTerm + ThisMesh%GeometricSeriesCoefficient ** (I - 1)

END DO

!’set up a list of cell widths for this region

CellWidth = (GridWidth / 2) / SummationTerm

RetVal (0) = CellWidth

DO I = 1, NumCellsOnEachSide - 1

CellWidth = CellWidth * ThisMesh%GeometricSeriesCoefficient

RetVal(I) = CellWidth

END DO

SubIndex = NumCellsOnEachSide

DO I = NumCellsOnEachSide -1, 0, -1

SubIndex = SubIndex + 1

RetVal(SubIndex) = RetVal(I)

END DO

END IF

g%CellWidths = RetVal

DEALLOCATE(RetVal)

END SUBROUTINE

END MODULE

MODULE PiechowskiSimulationManager

USE PiechowskiData

USE Sim

USE Extensions

USE mCartesianCell

IMPLICIT NONE

PUBLIC

!As much as I hate to do it , it is so so much easier to define them out here ...

INTEGER , ALLOCATABLE , DIMENSION (:) :: NeighborFieldCells

INTEGER , ALLOCATABLE , DIMENSION (:) :: NeighborBoundaryCells

!Pipe Circuit stuff

REAL(r64), PARAMETER :: CurFluidDensity = 998.0d0

REAL(r64), PARAMETER :: CurFluidViscosity = 0.0015 d0

REAL(r64), PARAMETER :: CurFluidConductivity = 0.58d0

REAL(r64), PARAMETER :: CurFluidPrandtl = 7.0d0

REAL(r64), PARAMETER :: CurFluidSpecificHeat = 4190.0 d0

REAL(r64), PARAMETER :: StagnantFluidConvCoeff = 200.0d0

!Other?

LOGICAL , PARAMETER :: DoingFreezing = .FALSE.

REAL(r64), PARAMETER :: BasementFloorConvCoeff = 23.0d0

REAL(r64), PARAMETER :: BasementWallConvCoeff = 23.0d0

REAL(r64), PARAMETER :: AirDensity = 1.22521 d0 ! ’[kg/m3]

REAL(r64), PARAMETER :: AirSpecificHeat = 1003d0 ! ’[J/kg -K]

REAL(r64), PARAMETER :: RadiationAbsorption = 0.25d0 !0.333 d0

REAL(r64), PARAMETER :: SecondsPerHour = 3600.0 d0

REAL(r64), PARAMETER :: HoursPerDay = 24.0d0

REAL(r64), PARAMETER :: NumSecondsPerDay = SecondsPerHour * HoursPerDay

!Things that need to vary , even in the standalone simulation -- would come from heat pump sim

REAL(r64) :: CurCircuitInletTemp = 23.0d0

REAL(r64) :: CurCircuitFlowRate = 0.1321

REAL(r64) :: CurCircuitHeatPumpQ = 500.0 d0
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REAL(r64) :: BasementTemp = 21.0d0

REAL(r64) :: CurSimTimeSeconds

REAL(r64) :: CurSimTimeStepSize

! Environmental conditions

REAL(r64) :: CurAirTemp = 10.0d0 ! -12.2d0 !Sim. CurSimConditions . CurTransient .DryBulb

REAL(r64) :: CurWindSpeed = 2.6d0 !Sim. CurSimConditions . CurTransient . WindSpeed !’[m/s]

REAL(r64) :: CurIncidentSolar = 0.0d0

REAL(r64) :: CurRelativeHumidity = 100.0 d0

CONTAINS

SUBROUTINE PerformSimulation(TimeStepIndex , TimeStepSize , NumIterationsUsed , ErrorsFound)

LOGICAL , SAVE :: DoOneTimeInits = .TRUE.

INTEGER , INTENT(IN) :: TimeStepIndex

REAL(r64), INTENT(IN) :: TimeStepSize

INTEGER , INTENT(INOUT) :: NumIterationsUsed

LOGICAL , INTENT(INOUT) :: ErrorsFound

LOGICAL :: hard_stop

!Set the current sim time

CurSimTimeStepSize = TimeStepSize

CurSimTimeSeconds = TimeStepIndex * TimeStepSize

!Do any one -time initializations

IF (DoOneTimeInits) THEN

CALL DoOneTimeInitializations ()

DoOneTimeInits = .FALSE.

END IF

! allow the program to end cleanly if this file is found

inquire(FILE=stopFile , EXIST=hard_stop)

if (hard_stop) then

stop 603

end if

!Update the temperature field

CALL PerformSimulationLoop(NumIterationsUsed , ErrorsFound)

!Do any post - processing

!CALL PerformEnergyCalculations ()

END SUBROUTINE

SUBROUTINE PerformSimulationLoop(NumIterationsUsed , ErrorsFound)

LOGICAL :: NewTimeStep

INTEGER :: IterationIndex

LOGICAL :: FinishedIterationLoop

LOGICAL , INTENT(INOUT) :: ErrorsFound

INTEGER , INTENT(INOUT) :: NumIterationsUsed

NewTimeStep = .TRUE. !TO be determined during simulation

! If we moved in time , we need to shift the previous values

IF (NewTimeStep) THEN

CALL ShiftTemperaturesForNewTimeStep ()

END IF

! Always do start of time step inits

CALL DoStartOfTimeStepInitializations ()

! Prepare the pipe circuit for calculations , but we ’ll actually do calcs at the iteration level

IF (Has%PipeCircuit) CALL PreparePipeCircuitSimulation ()

! Begin iterating for this time step

DO IterationIndex = 1, SimControls%Cartesian%MaxIterationsPerTS

!CALL DoStartOfIterationInitializations ()

CALL ShiftTemperaturesForNewIteration ()

IF (Has%PipeCircuit) CALL PerformPipeCircuitSimulation ()

CALL PerformTemperatureFieldUpdate ()

! CALL PerformEnergyCalculations

FinishedIterationLoop = .FALSE.

ErrorsFound = .FALSE.

CALL DoEndOfIterationOperations(IterationIndex , FinishedIterationLoop , ErrorsFound)

IF (ErrorsFound) RETURN

IF (FinishedIterationLoop) EXIT

END DO

NumIterationsUsed = MIN(IterationIndex , SimControls%Cartesian%MaxIterationsPerTS)

RETURN

END SUBROUTINE

SUBROUTINE PerformTemperatureFieldUpdate ()
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INTEGER :: X, Y, Z

DO Z = 0, UBOUND(Cells , 3)

DO Y = 0, UBOUND(Cells , 2)

DO X = 0, UBOUND(Cells , 1)

!’otherwise call the appropriate calculation routine

SELECT CASE (Cells(X,Y,Z)%CellType)

CASE (CellType_Pipe)

!’pipes are simulated separately

CASE (CellType_GeneralField)

Cells(X,Y,Z)%MyBase%Temperature = EvaluateFieldCellTemperature(Cells(X,Y,Z))

CASE (CellType_GroundSurface)

Cells(X,Y,Z)%MyBase%Temperature = EvaluateGroundSurfaceTemperature(Cells(X,Y,Z))

CASE (CellType_FarfieldBoundary)

Cells(X,Y,Z)%MyBase%Temperature = EvaluateFarfieldBoundaryTemperature(Cells(X,Y,Z))

CASE (CellType_BasementWall , CellType_BasementCorner , CellType_BasementFloor)

Cells(X,Y,Z)%MyBase%Temperature = EvaluateBasementCellTemperature(Cells(X,Y,Z))

CASE (CellType_BasementCutAway)

Cells(X,Y,Z)%MyBase%Temperature = BasementTemp !To be updated during simulation

CASE (CellType_AdiabaticWall)

Cells(X,Y,Z)%MyBase%Temperature = EvaluateAdiabaticSurfaceTemperature(Cells(X,Y,Z))

END SELECT

END DO

END DO

END DO

END SUBROUTINE

REAL(r64) FUNCTION EvaluateFieldCellTemperature(ThisCell) RESULT(RetVal)

TYPE(CartesianCell), INTENT(IN) :: ThisCell

REAL(r64) :: Numerator

REAL(r64) :: Denominator

REAL(r64) :: Beta

REAL(r64) :: NeighborTemp

REAL(r64) :: Resistance

INTEGER :: DirectionCounter

INTEGER :: CurDirection !From Enum: Direction

!Set up once -per -cell items

Numerator = 0.0

Denominator = 0.0

Beta = ThisCell%MyBase%Beta

!add effect from cell history

Numerator = Numerator + ThisCell%MyBase%Temperature_PrevTimeStep

Denominator = Denominator + 1

!determine the neighbor types based on cell location

CALL EvaluateCellNeighborDirections(ThisCell)

!loop across each direction in the simulation

DO DirectionCounter = LBOUND(NeighborFieldCells ,1), UBOUND(NeighborFieldCells ,1)

CurDirection = NeighborFieldCells(DirectionCounter)

!’evaluate the transient expression terms

CALL EvaluateNeighborCharacteristics(ThisCell , CurDirection , NeighborTemp , Resistance)

Numerator = Numerator + (Beta / Resistance) * NeighborTemp

Denominator = Denominator + Beta / Resistance

END DO

!’now that we have passed all directions , update the temperature

RetVal = Numerator / Denominator

END FUNCTION

REAL(r64) FUNCTION EvaluateGroundSurfaceTemperature(cell) RESULT(RetVal)

TYPE(CartesianCell), INTENT(IN) :: cell

!declare some variables

REAL(r64) :: Numerator

REAL(r64) :: Denominator

REAL(r64) :: Resistance

REAL(r64) :: NeighborTemp

REAL(r64) :: ThisNormalArea

REAL(r64) :: IncidentHeatGain

INTEGER :: DirectionCounter

INTEGER :: CurDirection

REAL(r64) :: AdiabaticMultiplier

REAL(r64) :: Beta

! evapotranspiration "inputs"

REAL(r64), PARAMETER :: Latitude_Degrees = 36.010278 d0

REAL(r64), PARAMETER :: StMeridian_Degrees = 90.0d0 !Standard meridian , degrees W

REAL(r64), PARAMETER :: Longitude_Degrees = 84.269722 d0 !Longitude , degrees W

REAL(r64), PARAMETER :: Elevation = 0.0d0 !units? sea level?
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! evapotranspiration parameters

REAL(r64), PARAMETER :: MeanSolarConstant = 0.08196 d0 ! 1367 [W/m2], entered in [MJ/m2 -minute]

REAL(r64), PARAMETER :: A_s = 0.25d0 !?

REAL(r64), PARAMETER :: B_s = 0.5d0 !?

REAL(r64), PARAMETER :: Absor_Corrected = 0.77d0

REAL(r64), PARAMETER :: Convert_Wm2_To_MJhrmin = 3600.0 d0 / 1000000.0 d0

REAL(r64), PARAMETER :: Convert_MJhrmin_To_Wm2 = 1.0d0 / Convert_Wm2_To_MJhrmin

REAL(r64), PARAMETER :: Rho_water = 998.0d0 ![kg/m3]

! evapotranspiration calculated values

REAL(r64) :: Latitude_Radians

REAL(r64) :: DayOfYear

REAL(r64) :: HourOfDay

REAL(r64) :: CurSecondsIntoToday

REAL(r64) :: dr

REAL(r64) :: Declination

REAL(r64) :: b_sc

REAL(r64) :: Sc

REAL(r64) :: Hour_Angle

REAL(r64) :: X_sunset

REAL(r64) :: Sunset_Angle

REAL(r64) :: Altitude_Angle

REAL(r64) :: Solar_Angle_1

REAL(r64) :: Solar_Angle_2

REAL(r64) :: QRAD_A

REAL(r64) :: QRAD_SO

REAL(r64) :: Ratio_SO

REAL(r64), SAVE :: Last_Ratio_SO

REAL(r64) :: IncidentSolar_MJhrmin

REAL(r64) :: AbsorbedIncidentSolar_MJhrmin

REAL(r64) :: VaporPressureSaturated_kPa

REAL(r64) :: VaporPressureActual_kPa

REAL(r64) :: QRAD_NL

REAL(r64) :: NetIncidentRadiation_MJhr ![MJ/hr]

REAL(r64) :: NetIncidentRadiation_Wm2 ![W/m2]

REAL(r64) :: CN

REAL(r64) :: G_hr

REAL(r64) :: Cd

REAL(r64) :: Slope_S

REAL(r64) :: Pressure

REAL(r64) :: PsychrometricConstant

REAL(r64) :: EvapotransFluidLoss_mmhr

REAL(r64) :: EvapotransFluidLoss_mhr

REAL(r64) :: LatentHeatVaporization

REAL(r64) :: EvapotransHeatLoss_MJhrmin ![MJ/m2 -hr]

REAL(r64) :: EvapotransHeatLoss_Wm2 ![W/m2]

REAL(r64) :: CurAirTempK

LOGICAL , SAVE :: OneTimeOpenTempFile = .TRUE.

LOGICAL , PARAMETER :: DoingEvapotranspiration = .TRUE.

Numerator = 0.0

Denominator = 0.0

Resistance = 0.0

Beta = cell%MyBase%Beta

ThisNormalArea = NormalArea(cell , Direction_PositiveY)

!’add effect from previous time step

Numerator = Numerator + cell%MyBase%Temperature_PrevTimeStep

Denominator = Denominator + 1

!now that we aren ’t infinitesimal , we need to determine the neighbor types based on cell location

CALL EvaluateCellNeighborDirections(cell)

!loop over all regular neighbor cells , check if we have adiabatic on opposite surface

DO DirectionCounter = LBOUND(NeighborFieldCells ,1), UBOUND(NeighborFieldCells ,1)

CurDirection = NeighborFieldCells(DirectionCounter)

!If we have adiabatic z-faces , check if we are adjacent to one in the opposite direction

!If we don ’t have adiabatic faces , we handle the boundary stuff below

IF (Mesh%Z%BoundaryType == BoundaryType_Adiabatic) THEN

IF ( (CurDirection == Direction_NegativeZ) .AND. (cell%Z_index == UBOUND(Cells ,3)) ) THEN

AdiabaticMultiplier = 2.0

ELSE IF ( (CurDirection == Direction_PositiveZ) .AND. (cell%Z_index ==0) ) THEN

AdiabaticMultiplier = 2.0

ELSE

AdiabaticMultiplier = 1.0

END IF

ELSE

AdiabaticMultiplier = 1.0

END IF

!Use the multiplier (either 1 or 2) to calculate the neighbor cell effects

CALL EvaluateNeighborCharacteristics(cell , CurDirection , NeighborTemp , Resistance)

Numerator = AdiabaticMultiplier * Numerator + (Beta / Resistance) * NeighborTemp

Denominator = AdiabaticMultiplier * Denominator + (Beta / Resistance)

END DO

!do all non -adiabatic boundary types here

DO DirectionCounter = LBOUND(NeighborBoundaryCells ,1), UBOUND(NeighborBoundaryCells ,1)

CurDirection = NeighborBoundaryCells(DirectionCounter)
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!x- direction will always be a farfield boundary

!z- direction will be handled here if farfield , above if adiabatic

!-y we don ’t handle here because -y will always be a neighbor cell , so handled above

!+y will always be the outdoor air

SELECT CASE (CurDirection)

CASE (Direction_PositiveX , Direction_NegativeX)

! always farfield

CALL EvaluateFarfieldCharacteristics(cell , CurDirection , NeighborTemp , Resistance)

Numerator = Numerator + (Beta / Resistance) * NeighborTemp

Denominator = Denominator + (Beta / Resistance)

CASE (Direction_PositiveZ , Direction_NegativeZ)

! only if it is farfield

IF (Mesh%Z%BoundaryType == BoundaryType_Farfield) THEN

CALL EvaluateFarfieldCharacteristics(cell , CurDirection , NeighborTemp , Resistance)

Numerator = Numerator + (Beta / Resistance) * NeighborTemp

Denominator = Denominator + (Beta / Resistance)

END IF

CASE (Direction_PositiveY)

! convection at the surface

IF (CurWindSpeed .GT. 0.1) THEN

Resistance = 208 / (AirDensity * AirSpecificHeat * ThisNormalArea)

Numerator = Numerator + (Beta / Resistance) * CurAirTemp

Denominator = Denominator + (Beta / Resistance)

ELSE

!Could include natural convection

END IF

CASE (Direction_NegativeY)

!debug error , can ’t get here!

END SELECT

END DO

! Initialize , this variable is used for both evapotranspiration and non -ET cases , [W]

IncidentHeatGain = 0.0d0

! Calculate any net heat gain into the cell from environment

IF (DoingEvapotranspiration) THEN

! Latitude , converted to radians ... positive for northern hemisphere , [radians]

Latitude_Radians = Pi / 180.0d0 * Latitude_Degrees

! The day of year at this point in the simulation

DayOfYear = INT( CurSimTimeSeconds / NumSecondsPerDay )

! The number of seconds into the current day

CurSecondsIntoToday = INT( MOD( CurSimTimeSeconds , NumSecondsPerDay ) )

! The number of hours into today

HourOfDay = INT( CurSecondsIntoToday / SecondsPerHour )

! For convenience convert to Kelvin once

CurAirTempK = CurAirTemp + 273.15 d0

! Calculate some angles

dr = 1.0d0 + 0.033d0 * COS (2.0d0 * Pi * DayOfYear / 365.0 d0)

Declination = 0.409d0 * SIN (2.0d0 * Pi / 365.0 d0 * DayOfYear - 1.39d0)

b_SC = 2.0d0 * Pi * (DayOfYear - 81.0d0)/364.0 d0

Sc = 0.1645 d0 * SIN (2.0d0 * b_SC) - 0.1255 d0 * COS(b_SC) - 0.025d0 * SIN(b_SC)

Hour_Angle = Pi / 12.0d0 * ( ( (HourOfDay - 0.5d0) + 0.06667 d0 * (StMeridian_Degrees -

Longitude_Degrees) + Sc) - 12.0d0)

!For HOUR_INADAY -0.5 not HOUR_INADAY +0.5 , as HOUR_INADAY from 0 to 1, it shows 1 not zero here.

!Lz longitude of the centre of the local time zone [degrees west of Greenwich ].

! For example , Lz = 75, 90, 105 and 120 for the Eastern , Central , Rocky Mountain and Pacific time

zones (United States)

!and Lz = 0 for Greenwich , 330 for Cairo (Egypt), and 255 for Bangkok (Thailand),

! Calculate sunset something , and constrain to a minimum of 0.000001

X_sunset = 1.0d0 - TAN(Latitude_Radians)**2.0d0 * TAN(Declination)**2.0d0

X_sunset = MAX(X_sunset , 0.000001 d0)

! Find sunset angle

Sunset_angle = Pi / 2.0d0 - ATAN(-TAN(Latitude_Radians) * TAN(Declination) / X_sunset **0.5d0 )

! Find the current sun angle

Altitude_Angle = ASIN( SIN(Latitude_Radians) * SIN(Declination) + COS(Latitude_Radians) * COS(

Declination) * COS(Hour_Angle) )

! Find solar angles

Solar_angle_1 = Hour_Angle - Pi / 24.0d0

Solar_angle_2 = Hour_Angle + Pi / 24.0d0

! Constrain solar angles

IF(Solar_angle_1 .LT. -Sunset_angle ) Solar_angle_1 = -Sunset_angle

IF(Solar_angle_2 .LT. -Sunset_angle ) Solar_angle_2 = -Sunset_angle

IF(Solar_angle_1 .GT. Sunset_angle ) Solar_angle_1 = Sunset_angle

IF(Solar_angle_2 .GT. Sunset_angle ) Solar_angle_2 = Sunset_angle

IF(Solar_angle_1 .GT. Solar_angle_2) Solar_angle_1 = Solar_angle_2

! Convert input solar radiation [w/m2] into units for ET model , [MJ/hr -min]

IncidentSolar_MJhrmin = CurIncidentSolar * Convert_Wm2_To_MJhrmin
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! Calculate another Q term ...

QRAD_a = 12.0d0 * 60.0d0 / Pi * MeanSolarConstant * dr * &

( (Solar_angle_2 - Solar_angle_1) * SIN(Latitude_Radians) * SIN(Declination) + COS(

Latitude_Radians) * COS(Declination) * (SIN(Solar_angle_2)-SIN(Solar_angle_1)))

! Calculate another Q term ...

QRAD_SO = ( A_s + B_s + 0.00002 d0 * Elevation ) * QRAD_a

! Correct the Qrad term ... better way ??

IF (IncidentSolar_MJhrmin .LT. 0.01d0) THEN

Ratio_SO = LAST_RATIO_SO

ELSE

IF (QRAD_SO /= 0.d0) THEN

Ratio_SO = IncidentSolar_MJhrmin / QRAD_SO

ELSE

Ratio_SO = 1.0d0

END IF

END IF

! Constrain Ratio_SO

Ratio_SO = MIN(Ratio_SO , 1.0d0)

Ratio_SO = MAX(Ratio_SO , 0.3d0)

! Store the previous

LAST_RATIO_SO=Ratio_SO

! Calculate another Q term , [MJ/hr -min]

AbsorbedIncidentSolar_MJhrmin = ABSOR_CORRECTED * IncidentSolar_MJhrmin

! Calculate saturated vapor pressure , [kPa]

VaporPressureSaturated_kPa = 0.6108 d0 * EXP (17.27 d0 * CurAirTemp / (CurAirTemp + 237.3d0))

! Calculate actual vapor pressure , [kPa]

VaporPressureActual_kPa = VaporPressureSaturated_kPa * CurRelativeHumidity / 100.0d0

! Calculate another Q term , [MJ/m2 -hr]

QRAD_NL = 2.042D-10 * CurAirTempK **4.0d0 * (0.34d0 - 0.14d0 * SQRT(VaporPressureActual_kPa)) * (1.35

d0 * Ratio_SO - 0.35d0)

! Calculate another Q term , [MJ/hr]

NetIncidentRadiation_MJhr = AbsorbedIncidentSolar_MJhrmin - QRAD_NL

! ?

Cn = 37.0d0

! Check whether there was sun

IF (NetIncidentRadiation_MJhr .LT. 0.0) THEN

G_hr = 0.5d0 * NetIncidentRadiation_MJhr

Cd = 0.96d0

ELSE

G_hr = 0.1d0 * NetIncidentRadiation_MJhr

Cd = 0.24d0

END IF

! Just For Check

! Lu Xing Sep 22 2009

Slope_S = 2503.0 d0 * EXP (17.27 d0 * CurAirTemp / (CurAirTemp + 237.3d0)) / (CurAirTemp +237.3 d0)**2

Pressure = 98.0d0

PsychrometricConstant = 0.665E-3 * Pressure

! Evapotranspiration constant , [mm/hr]

EvapotransFluidLoss_mmhr = (0.408 d0 * Slope_s * (NetIncidentRadiation_MJhr - G_hr) +

PsychrometricConstant * (Cn / CurAirTempK) * Curwindspeed * (VaporPressureSaturated_kPa -

VaporPressureActual_kPa)) &

/ (Slope_s + PsychrometricConstant * (1 + Cd * CurWindSpeed))

! Convert units , [m/hr]

EvapotransFluidLoss_mhr = EvapotransFluidLoss_mmhr / 1000.0 d0

! Calculate latent heat , [MJ/kg]

! Full formulation is cubic: L(T) = 0 .0000614342 * T**3 + 0.00158927 * T**2 2.36418

* T + 2500.79[5]

! In: Cubic fit to Table 2.1,p.16, Textbook: R.R.Rogers & M.K. Yau , A Short Course in Cloud Physics ,

3e ,(1989) , Pergamon press

! But a linear relation should suffice; -for now using the previous time step temperature as an

approximation to help ensure stability

LatentHeatVaporization = 2.501d0 - 2.361d-3 * cell%MyBase%Temperature_PrevTimeStep

! Calculate evapotranspiration heat loss , [MJ/m2 -hr]

EvapotransHeatLoss_MJhrmin = RHO_water * EvapotransFluidLoss_mhr * LatentHeatVaporization

! Convert net incident solar units , [W/m2]

NetIncidentRadiation_Wm2 = NetIncidentRadiation_MJhr * Convert_MJhrmin_To_Wm2

! Convert evapotranspiration units , [W/m2]

EvapotransHeatLoss_Wm2 = EvapotransHeatLoss_MJhrmin * Convert_MJhrmin_To_Wm2

! Calculate overall net heat ?gain? into the cell , [W]

IncidentHeatGain = (NetIncidentRadiation_Wm2 - EvapotransHeatLoss_Wm2) * ThisNormalArea

ELSE
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!’calculate solar radiation into the cell using simple radiation and no evapotranspiration

IncidentHeatGain = CurIncidentSolar * RadiationAbsorption * ThisNormalArea

END IF

! Add any solar/ evapotranspiration heat gain here

Numerator = Numerator + Beta * IncidentHeatGain

! Calculate the return temperature and leave

RetVal = Numerator / Denominator

RETURN

END FUNCTION

REAL(r64) FUNCTION EvaluateAdiabaticSurfaceTemperature(cell) RESULT(RetVal)

TYPE(CartesianCell), INTENT(IN) :: cell

REAL(r64) :: Numerator

REAL(r64) :: Denominator

REAL(r64) :: Resistance

REAL(r64) :: NeighborTemp

REAL(r64) :: Beta

INTEGER :: DirectionCounter

INTEGER :: CurDirection

REAL(r64) :: AdiabaticMultiplier

Numerator = 0.0

Denominator = 0.0

Resistance = 0.0

Beta = cell%MyBase%Beta

!’add effect from previous time step

Numerator = Numerator + cell%MyBase%Temperature_PrevTimeStep

Denominator = Denominator + 1

!now that we aren ’t infinitesimal , we need to determine the neighbor types based on cell location

CALL EvaluateCellNeighborDirections(cell)

DO DirectionCounter = LBOUND(NeighborFieldCells ,1), UBOUND(NeighborFieldCells ,1)

CurDirection = NeighborFieldCells(DirectionCounter)

AdiabaticMultiplier = 1.0

! There are only a few cases for adiabatic cells to be handled here

! These cases must be validated during mesh development as they aren ’t here

! For example , the +x case below will only be hit if the celltype is actually

! assigned to be Adiabatic ... which only happens if the mesh dev engine

! recognizes that there is in fact a basement , and the boundary type is

! specified as adiabatic.

SELECT CASE (CurDirection)

CASE (Direction_PositiveZ) ! Case: front face looking in +z direction

IF (cell%Z_index == 0) AdiabaticMultiplier = 2.0

CASE (Direction_NegativeZ) ! Case: back face looking in -z direction

IF (cell%Z_index == UBOUND(Cells ,3)) AdiabaticMultiplier = 2.0

CASE (Direction_PositiveX) ! Case: Under basement floor , far left cell

IF (cell%X_index == 0) AdiabaticMultiplier = 2.0

CASE (Direction_NegativeY) ! Case: basement wall ground surface boundary

!Not sure if this is ever hit (it should be a basement wall celltype)

IF (cell%Y_index == UBOUND(Cells ,2)) AdiabaticMultiplier = 2.0

END SELECT

!Use the multiplier (either 1 or 2) to calculate the neighbor cell effects

CALL EvaluateNeighborCharacteristics(cell , CurDirection , NeighborTemp , Resistance)

Numerator = AdiabaticMultiplier * Numerator + (Beta / Resistance) * NeighborTemp

Denominator = AdiabaticMultiplier * Denominator + (Beta / Resistance)

END DO

RetVal = Numerator / Denominator

RETURN

END FUNCTION

REAL(r64) FUNCTION EvaluateBasementCellTemperature(cell) RESULT(RetVal)

TYPE(CartesianCell), INTENT(IN) :: cell

REAL(r64) :: Numerator

REAL(r64) :: Denominator

REAL(r64) :: Beta

REAL(r64) :: Resistance

REAL(r64) :: NeighborTemp

INTEGER :: DirectionCounter

INTEGER :: CurDirection

REAL(r64) :: AdiabaticMultiplier

Numerator = 0.0

Denominator = 0.0

Resistance = 0.0

Beta = cell%MyBase%Beta
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!add effect from previous time step

Numerator = Numerator + cell%MyBase%Temperature_PrevTimeStep

Denominator = Denominator + 1

!now that we aren ’t infinitesimal , we need to determine the neighbor types based on cell location

CALL EvaluateCellNeighborDirections(cell)

DO DirectionCounter = LBOUND(NeighborFieldCells ,1), UBOUND(NeighborFieldCells ,1)

CurDirection = NeighborFieldCells(DirectionCounter)

AdiabaticMultiplier = 1.0

! The basement cells line up a lot with the adiabatic cell routine

! These cases must be validated during mesh development as they aren ’t here

! For example , the +x case below will only be hit if the celltype is actually

! assigned to be Adiabatic ... which only happens if the mesh dev engine

! recognizes that there is in fact a basement , and the boundary type is

! specified as adiabatic.

SELECT CASE (CurDirection)

CASE (Direction_PositiveZ) ! Case: front face looking in +z direction

IF (cell%Z_index == 0) AdiabaticMultiplier = 2.0

CASE (Direction_NegativeZ) ! Case: back face looking in -z direction

IF (cell%Z_index == UBOUND(Cells ,3)) AdiabaticMultiplier = 2.0

CASE (Direction_PositiveX) ! Case: Basement floor , far left cell

IF (cell%X_index == 0) AdiabaticMultiplier = 2.0

CASE (Direction_NegativeY) ! Case: basement wall ground surface boundary

IF (cell%Y_index == UBOUND(Cells ,2)) AdiabaticMultiplier = 2.0

END SELECT

!Use the multiplier (either 1 or 2) to calculate the neighbor cell effects

CALL EvaluateNeighborCharacteristics(cell , CurDirection , NeighborTemp , Resistance)

Numerator = AdiabaticMultiplier * Numerator + (Beta / Resistance) * NeighborTemp

Denominator = AdiabaticMultiplier * Denominator + (Beta / Resistance)

END DO

RetVal = Numerator / Denominator

RETURN

END FUNCTION

REAL(r64) FUNCTION EvaluateFarfieldBoundaryTemperature(cell) RESULT(RetVal)

TYPE(CartesianCell), INTENT(IN) :: cell

REAL(r64) :: Numerator

REAL(r64) :: Denominator

REAL(r64) :: Beta

REAL(r64) :: Resistance

INTEGER :: DirectionCounter

INTEGER :: CurDirection

REAL(r64) :: NeighborTemp

Numerator = 0.0

Denominator = 0.0

Resistance = 0.0

Beta = cell%MyBase%Beta

!add effect from previous time step

Numerator = Numerator + cell%MyBase%Temperature_PrevTimeStep

Denominator = Denominator + 1

!now that we aren ’t infinitesimal , we need to determine the neighbor types based on cell location

CALL EvaluateCellNeighborDirections(cell)

!This may be incomplete , as there may need to be adiabatic conditions to be handled here as well

!Do all neighbor cells

DO DirectionCounter = LBOUND(NeighborFieldCells ,1), UBOUND(NeighborFieldCells ,1)

CurDirection = NeighborFieldCells(DirectionCounter)

CALL EvaluateNeighborCharacteristics(cell , CurDirection , NeighborTemp , Resistance)

Numerator = Numerator + (Beta / Resistance) * NeighborTemp

Denominator = Denominator + (Beta / Resistance)

END DO

!Then all farfield boundaries

DO DirectionCounter = LBOUND(NeighborBoundaryCells ,1), UBOUND(NeighborBoundaryCells ,1)

CurDirection = NeighborBoundaryCells(DirectionCounter)

CALL EvaluateFarfieldCharacteristics(cell , CurDirection , NeighborTemp , Resistance)

Numerator = Numerator + (Beta / Resistance) * NeighborTemp

Denominator = Denominator + (Beta / Resistance)

END DO

RetVal = Numerator / Denominator

RETURN

END FUNCTION

SUBROUTINE EvaluateFarfieldCharacteristics(cell , direction , neighbortemp , resistance)

TYPE(CartesianCell), INTENT(IN) :: cell

INTEGER , INTENT(IN) :: direction
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REAL(r64), INTENT(OUT) :: neighbortemp

REAL(r64), INTENT(OUT) :: resistance

REAL(r64) :: distance

SELECT CASE (direction)

CASE(Direction_NegativeX , Direction_PositiveX)

distance = (width(cell) / 2.0)

CASE(Direction_NegativeY , Direction_PositiveY)

distance = (height(cell) / 2.0)

CASE(Direction_NegativeZ , Direction_PositiveZ)

distance = (depth(cell) / 2.0)

END SELECT

! previously this distance was *again* divided by 2, a bug I believe , removed for now ...

resistance = distance / (cell%mybase%properties%conductivity * NormalArea(cell , direction))

neighbortemp = GetFarfieldTemp(cell)

RETURN

END SUBROUTINE

REAL(r64) FUNCTION GetFarfieldTemp(cell) RESULT(RetVal)

TYPE(CartesianCell), INTENT(IN) :: cell

REAL(r64) :: ScaledDepth

REAL(r64) :: z

REAL(r64) :: Term1

REAL(r64) :: Term2

SELECT CASE(Farfield%Model)

CASE(FarfieldModel_Constant)

RetVal = Farfield%Constant%Temperature

CASE(FarfieldModel_ConstantLinear)

ScaledDepth = (Extents%Ymax - cell%Centroid%Y) / Extents%Ymax

RetVal = Farfield%ConstantLinear%SurfaceTemperature + Farfield%ConstantLinear%Slope * ScaledDepth

CASE(FarfieldModel_KusudaAchenbach)

z = Extents%Ymax - cell%Centroid%Y

Term1 = -z * SQRT(PI / (SecondsInYear * BaseThermalPropertySet_Diffusivity(GroundProperties)))

Term2 = (2 * PI / SecondsInYear) * (CurSimTimeSeconds - Farfield%KusudaAchenbach%

PhaseShiftOfMinGroundTemp - (z / 2) * SQRT(SecondsInYear / (PI *

BaseThermalPropertySet_Diffusivity(GroundProperties))))

RetVal = Farfield%KusudaAchenbach%AverageGroundTemperature - Farfield%KusudaAchenbach%

AverageGroundTemperatureAmplitude * EXP(Term1) * COS(Term2)

END SELECT

END FUNCTION

SUBROUTINE PreparePipeCircuitSimulation ()

!In standalone , just pass the fluid through , no heat pump

!In EnergyPlus , this will be where we initialize the entering conditions

TYPE(CartesianCell) :: CellToCheck

TYPE(RadialCellInformation) :: PipeCell

TYPE(FluidCellInformation) :: FluidCell

REAL(r64) :: Density

REAL(r64) :: Viscosity

REAL(r64) :: Conductivity

REAL(r64) :: Prandtl

REAL(r64) :: Area_c

REAL(r64) :: Velocity

REAL(r64) :: ConvCoefficient

REAL(r64) :: Reynolds

REAL(r64) :: ExponentTerm

REAL(r64) :: Nusselt

REAL(r64) :: CurCircuitOutletTemp

REAL(r64) :: SpecificHeat

!Setup circuit flow conditions -- convection coefficient

CellToCheck = PipeCircuit%CircuitInletCell

PipeCell = CellToCheck%PipeCellData%Pipe

FluidCell = CellToCheck%PipeCellData%Fluid

Density = PipeCircuit%CurFluidPropertySet%MyBase%Density

Viscosity = PipeCircuit%CurFluidPropertySet%Viscosity

Conductivity = PipeCircuit%CurFluidPropertySet%MyBase%Conductivity

Prandtl = PipeCircuit%CurFluidPropertySet%Prandtl

SpecificHeat = PipeCircuit%CurFluidPropertySet%MyBase%SpecificHeat

Area_c = (Pi /4.0) * PipeCircuit%PipeSize%InnerDia **2

Velocity = CurCircuitFlowRate / (Density * Area_c)

IF (Velocity > 0) THEN

Reynolds = Density * PipeCircuit%PipeSize%InnerDia * Velocity / Viscosity

IF ( FluidCell%MyBase%Temperature > PipeCell%MyBase%Temperature ) THEN

ExponentTerm = 0.3

ELSE

ExponentTerm = 0.4

END IF

Nusselt = 0.023 * Reynolds **(4./5.) * Prandtl ** ExponentTerm

ConvCoefficient = Nusselt * Conductivity / PipeCircuit%PipeSize%InnerDia

ELSE

ConvCoefficient = StagnantFluidConvCoeff
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END IF

PipeCircuit%CurCircuitConvectionCoefficient = ConvCoefficient

!Setup circuit entering conditions here -- heat pump model

CurCircuitOutletTemp = PipeCircuit%CircuitOutletCell%PipeCellData%Fluid%MyBase%Temperature

CurCircuitInletTemp = CurCircuitOutletTemp + (CurCircuitHeatPumpQ / (CurCircuitFlowRate * SpecificHeat))

RETURN

END SUBROUTINE

SUBROUTINE PerformPipeCircuitSimulation ()

TYPE(CartesianCell) :: UpstreamCell

REAL(r64) :: CircuitCrossTemp

REAL(r64) :: FlowRate

REAL(r64) :: EnteringTemp

INTEGER :: SegmentCtr

INTEGER :: SegmentCellCtr

TYPE(PipeSegmentInfo) :: Segment

INTEGER :: StartingZ

INTEGER :: EndingZ

INTEGER :: Increment

INTEGER :: PipeX

INTEGER :: PipeY

INTEGER :: Zindex

!retrieve initial conditions from the data structure

!these have been set either by the init routine or by the heat pump routine

FlowRate = CurCircuitFlowRate ! PipeCircuit . CurCircuitFlowRate

EnteringTemp = CurCircuitInletTemp ! PipeCircuit . CircuitInletCell . PipeCellData .Fluid. Temperature

! initialize

SegmentCellCtr = 0

!’loop across all segments (pipes) of the circuit

DO SegmentCtr = LBOUND(PipeCircuit%PipeSegments ,1), UBOUND(PipeCircuit%PipeSegments ,1)

Segment = PipeCircuit%PipeSegments(SegmentCtr)

!’set simulation flow direction

SELECT CASE (Segment%FlowDirection)

CASE (SegmentFlow_IncreasingZ)

StartingZ = 0

EndingZ = UBOUND(Cells , 3)

Increment = 1

CASE (SegmentFlow_DecreasingZ)

StartingZ = UBOUND(Cells , 3)

EndingZ = 0

Increment = -1

END SELECT

!’find the cell we are working on in order to retrieve cell and neighbor information

PipeX = Segment%PipeCellCoordinates%X

PipeY = Segment%PipeCellCoordinates%Y

!’loop across all z-direction indeces

DO Zindex = StartingZ , EndingZ , Increment

!’overall cell segment counter

SegmentCellCtr = SegmentCellCtr + 1

IF (SegmentCellCtr == 1) THEN

!’we have the very first cell , need to pass in circuiting entering temperature

CALL PerformPipeCellSimulation(Cells(PipeX , PipeY , Zindex), FlowRate , EnteringTemp)

ELSE

!’we don ’t have the first cell so just normal simulation

IF (Zindex == EndingZ) THEN

!get entering conditions from upstream cell

UpstreamCell = Cells(PipeX , PipeY , Zindex - Increment)

!simulate current cell using upstream as entering conditions

CALL PerformPipeCellSimulation(Cells(PipeX , PipeY , Zindex), FlowRate , UpstreamCell%

PipeCellData%Fluid%MyBase%Temperature)

!store this outlet condition to be passed to the next segment

CircuitCrossTemp = Cells(PipeX , PipeY , Zindex)%PipeCellData%Fluid%MyBase%Temperature

ELSE IF (Zindex == StartingZ) THEN

!we are starting another segment , use the previous cross temperature

CALL PerformPipeCellSimulation(Cells(PipeX , PipeY , Zindex), FlowRate , CircuitCrossTemp)

ELSE

!we are in an interior node , so just get the upstream cell and use the main simulation

UpstreamCell = Cells(PipeX , PipeY , Zindex - Increment)

CALL PerformPipeCellSimulation(Cells(PipeX , PipeY , Zindex), FlowRate , UpstreamCell%

PipeCellData%Fluid%MyBase%Temperature)

END IF

END IF

END DO

END DO

RETURN
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END SUBROUTINE

SUBROUTINE PerformPipeCellSimulation(ThisCell , FlowRate , EnteringTemp)

TYPE(CartesianCell), INTENT(IN OUT) :: ThisCell

REAL(r64), INTENT(IN) :: FlowRate

REAL(r64), INTENT(IN) :: EnteringTemp

INTEGER :: Iter

REAL(r64) :: MaxDeviationAmount

DO Iter = 1, SimControls%Radial%MaxIterationsPerTS

!’shift all the pipe related temperatures for the next internal pipe iteration

CALL ShiftPipeTemperaturesForNewIteration(ThisCell)

!’simulate the funny interface soil cell between the radial and cartesian systems

CALL SimulateRadialToCartesianInterface(ThisCell)

!’simulate the outermost radial slice

CALL SimulateOuterMostRadialSoilSlice(ThisCell)

!’we only need to simulate these if they actually exist!

IF (SIZE(ThisCell%PipeCellData%Soil) > 1) THEN

!’simulate all interior radial slices

CALL SimulateAllInteriorRadialSoilSlices(ThisCell)

!’simulate the innermost radial soil slice

CALL SimulateInnerMostRadialSoilSlice(ThisCell)

END IF

IF (Has%Insulation) THEN

CALL SimulateRadialInsulationCell(ThisCell)

END IF

!’simulate the pipe cell

CALL SimulateRadialPipeCell(ThisCell , FlowRate , PipeCircuit%CurCircuitConvectionCoefficient)

!’simulate the water cell since there appears to be flow

CALL SimulateFluidCell(ThisCell , FlowRate , PipeCircuit%CurCircuitConvectionCoefficient , EnteringTemp)

!’check convergence

IF (IsConverged_PipeCurrentToPrevIteration(ThisCell , MaxDeviationAmount)) EXIT

END DO

RETURN

END SUBROUTINE

SUBROUTINE SimulateRadialToCartesianInterface(ThisCell)

TYPE(CartesianCell), INTENT(IN OUT) :: ThisCell

!’placeholder variables

REAL(r64) :: Numerator

REAL(r64) :: Denominator

REAL(r64) :: Resistance

REAL(r64) :: Beta

INTEGER :: DirCtr

INTEGER :: Dir

REAL(r64) :: NeighborTemp

TYPE(RadialCellInformation) :: OutermostRadialCell

INTEGER , DIMENSION (4), PARAMETER :: Directions = (/ Direction_NegativeX , Direction_NegativeY ,

Direction_PositiveX , Direction_PositiveY /)

Numerator = 0.0d0

Denominator = 0.0d0

!’convenience variables

OutermostRadialCell = ThisCell%PipeCellData%Soil(UBOUND(ThisCell%PipeCellData%Soil ,1))

!’retrieve beta

Beta = ThisCell%MyBase%Beta

!’add effects from this cell history

Numerator = Numerator + ThisCell%MyBase%Temperature_PrevTimeStep

Denominator = Denominator + 1

!’add effects from outermost radial cell

Resistance = LOG(OutermostRadialCell%OuterRadius / OutermostRadialCell%RadialCentroid) / (2 * Pi * Depth(

ThisCell) * ThisCell%MyBase%Properties%Conductivity)

Numerator = Numerator + (Beta / Resistance) * OutermostRadialCell%MyBase%Temperature

Denominator = Denominator + (Beta / Resistance)

!’add effects from neighboring Cartesian cells

DO DirCtr = LBOUND(Directions ,1), UBOUND(Directions ,1)

Dir = Directions(DirCtr)
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!’get info about cartesian neighbors

CALL EvaluateNeighborCharacteristics(ThisCell , Dir , NeighborTemp , Resistance)

!’add to the numerator and denominator expressions

Numerator = Numerator + (Beta / Resistance) * NeighborTemp

Denominator = Denominator + (Beta / Resistance)

END DO

!’calculate the new temperature

ThisCell%MyBase%Temperature = Numerator / Denominator

RETURN

END SUBROUTINE

SUBROUTINE SimulateOuterMostRadialSoilSlice(ThisCell)

TYPE(CartesianCell), INTENT(IN OUT) :: ThisCell

!’placeholder variables

REAL(r64) :: Numerator

REAL(r64) :: Denominator

REAL(r64) :: Resistance

REAL(r64) :: Beta

INTEGER :: MaxRadialIndex

TYPE(RadialCellInformation) :: ThisRadialCell

TYPE(RadialCellInformation) :: NextOuterRadialCell

Numerator = 0.0d0

Denominator = 0.0d0

Resistance = 0.0d0

!’convenience variables

MaxRadialIndex = UBOUND(ThisCell%PipeCellData%Soil ,1)

ThisRadialCell = ThisCell%PipeCellData%Soil(MaxRadialIndex)

IF (SIZE(ThisCell%PipeCellData%Soil)==1) THEN

IF (Has%Insulation) THEN

NextOuterRadialCell = ThisCell%PipeCellData%Insulation

ELSE

NextOuterRadialCell = ThisCell%PipeCellData%Pipe

END IF

ELSE

NextOuterRadialCell = ThisCell%PipeCellData%Soil(MaxRadialIndex - 1)

END IF

!’any broadly defined variables

Beta = ThisRadialCell%MyBase%Beta

!’add effects from this cell history

Numerator = Numerator + ThisRadialCell%MyBase%Temperature_PrevTimeStep

Denominator = Denominator + 1

!’add effects from interface cell

Resistance = LOG(ThisRadialCell%OuterRadius / ThisRadialCell%RadialCentroid) / &

(2 * Pi * Depth(ThisCell) * ThisRadialCell%MyBase%Properties%Conductivity)

Numerator = Numerator + (Beta / Resistance) * ThisCell%MyBase%Temperature

Denominator = Denominator + (Beta / Resistance)

!’add effects from inner radial cell

Resistance = (LOG(ThisRadialCell%RadialCentroid / ThisRadialCell%InnerRadius) / &

(2 * Pi * Depth(ThisCell) * ThisRadialCell%MyBase%Properties%Conductivity)) &

+ (LOG(NextOuterRadialCell%OuterRadius/NextOuterRadialCell%RadialCentroid) / &

(2 * Pi * Depth(ThisCell) * NextOuterRadialCell%MyBase%Properties%Conductivity))

Numerator = Numerator + (Beta / Resistance) * NextOuterRadialCell%MyBase%Temperature

Denominator = Denominator + (Beta / Resistance)

!’calculate the new temperature

ThisCell%PipeCellData%Soil(MaxRadialIndex)%MyBase%Temperature = Numerator / Denominator

END SUBROUTINE

SUBROUTINE SimulateAllInteriorRadialSoilSlices(ThisCell)

TYPE(CartesianCell), INTENT(IN OUT) :: ThisCell

!’placeholder variables

REAL(r64) :: Numerator

REAL(r64) :: Denominator

REAL(r64) :: Resistance

REAL(r64) :: Beta

INTEGER :: MaxRadialIndex

TYPE(RadialCellInformation) :: ThisRadialCell

TYPE(RadialCellInformation) :: InnerRadialCell

TYPE(RadialCellInformation) :: oUTerRadialCell

INTEGER :: rCtr

Numerator = 0.0d0

Denominator = 0.0d0
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DO rCtr = UBOUND(ThisCell%PipeCellData%Soil ,1) -1, 1, -1

Numerator = 0.0d0

Denominator = 0.0d0

Resistance = 0.0d0

!’convenience variables

ThisRadialCell = ThisCell%PipeCellData%Soil(rCtr)

InnerRadialCell = ThisCell%PipeCellData%Soil(rCtr - 1)

OuterRadialCell = ThisCell%PipeCellData%Soil(rCtr + 1)

!’any broadly defined variables

Beta = ThisRadialCell%MyBase%Beta

!’add effects from this cell history

Numerator = Numerator + ThisRadialCell%MyBase%Temperature_PrevTimeStep

Denominator = Denominator + 1

!’add effects from outer cell

Resistance = (LOG(OuterRadialCell%RadialCentroid / OuterRadialCell%InnerRadius) / &

(2 * Pi * Depth(ThisCell) * OuterRadialCell%MyBase%Properties%Conductivity)) &

+ (LOG(ThisRadialCell%OuterRadius/ThisRadialCell%RadialCentroid) / &

(2 * Pi * Depth(ThisCell) * ThisRadialCell%MyBase%Properties%Conductivity))

Numerator = Numerator + (Beta / Resistance) * OuterRadialCell%MyBase%Temperature

Denominator = Denominator + (Beta / Resistance)

!’add effects from inner cell

Resistance = (LOG(ThisRadialCell%RadialCentroid / ThisRadialCell%InnerRadius) / &

(2 * Pi * Depth(ThisCell) * ThisRadialCell%MyBase%Properties%Conductivity)) &

+ (LOG(InnerRadialCell%OuterRadius/InnerRadialCell%RadialCentroid) / &

(2 * Pi * Depth(ThisCell) * InnerRadialCell%MyBase%Properties%Conductivity))

Numerator = Numerator + (Beta / Resistance) * InnerRadialCell%MyBase%Temperature

Denominator = Denominator + (Beta / Resistance)

!’calculate the new temperature

ThisCell%PipeCellData%Soil(rCtr)%MyBase%Temperature = Numerator / Denominator

END DO

END SUBROUTINE

SUBROUTINE SimulateInnerMostRadialSoilSlice(ThisCell)

TYPE(CartesianCell), INTENT(IN OUT) :: ThisCell

!’placeholder variables

REAL(r64) :: Numerator

REAL(r64) :: Denominator

REAL(r64) :: Resistance

REAL(r64) :: Beta

TYPE(RadialCellInformation) :: ThisRadialCell

TYPE(RadialCellInformation) :: InnerNeighborRadialCell

TYPE(RadialCellInformation) :: OuterNeighborRadialCell

Numerator = 0.0d0

Denominator = 0.0d0

!’convenience variables

IF (Has%Insulation) THEN

InnerNeighborRadialCell = ThisCell%PipeCellData%Insulation

ELSE

InnerNeighborRadialCell = ThisCell%PipeCellData%Pipe

END IF

ThisRadialCell = ThisCell%PipeCellData%Soil (0)

OuterNeighborRadialCell = ThisCell%PipeCellData%Soil (1)

!’any broadly defined variables

Beta = ThisRadialCell%MyBase%Beta

!’add effects from this cell history

Numerator = Numerator + ThisRadialCell%MyBase%Temperature_PrevTimeStep

Denominator = Denominator + 1

!’add effects from outer radial cell

Resistance = (LOG(OuterNeighborRadialCell%RadialCentroid / OuterNeighborRadialCell%InnerRadius) / &

(2 * PI * Depth(ThisCell) * OuterNeighborRadialCell%Mybase%Properties%Conductivity)) &

+(LOG(ThisRadialCell%OuterRadius / ThisRadialCell%RadialCentroid) / &

(2 * PI * Depth(ThisCell) * ThisRadialCell%Mybase%Properties%Conductivity))

Numerator = Numerator + (Beta / Resistance) * OuterNeighborRadialCell%MyBase%Temperature

Denominator = Denominator + (Beta / Resistance)

!’add effects from pipe cell

Resistance = (LOG(ThisRadialCell%RadialCentroid / ThisRadialCell%InnerRadius) / &

(2 * PI * Depth(ThisCell) * ThisRadialCell%MyBase%Properties%Conductivity)) &

+ (LOG(InnerNeighborRadialCell%OuterRadius / InnerNeighborRadialCell%RadialCentroid) / &

(2 * PI * Depth(ThisCell) * InnerNeighborRadialCell%MyBase%Properties%Conductivity))

Numerator = Numerator + (Beta / Resistance) * InnerNeighborRadialCell%MyBase%Temperature

Denominator = Denominator + (Beta / Resistance)

!’calculate the new temperature

ThisCell%PipeCellData%Soil (0)%MyBase%Temperature = Numerator / Denominator
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END SUBROUTINE

SUBROUTINE SimulateRadialInsulationCell(ThisCell)

TYPE(CartesianCell), INTENT(IN OUT) :: ThisCell

!’placeholder variables

REAL(r64) :: Numerator

REAL(r64) :: Denominator

REAL(r64) :: Resistance

REAL(r64) :: Beta

TYPE(RadialCellInformation) :: PipeCell

TYPE(RadialCellInformation) :: ThisInsulationCell

TYPE(RadialCellInformation) :: NextInnerRadialCell

Numerator = 0.0d0

Denominator = 0.0d0

!’convenience variables

PipeCell = ThisCell%PipeCellData%Pipe

ThisInsulationCell = ThisCell%PipeCellData%Insulation

NextInnerRadialCell = ThisCell%PipeCellData%Soil (0)

!’any broadly defined variables

Beta = ThisInsulationCell%MyBase%Beta

!’add effects from this cell history

Numerator = Numerator + ThisInsulationCell%MyBase%Temperature_PrevTimeStep

Denominator = Denominator + 1

!’add effects from outer radial cell

Resistance = (LOG(NextInnerRadialCell%RadialCentroid / NextInnerRadialCell%InnerRadius) / &

(2 * PI * Depth(ThisCell) * NextInnerRadialCell%MyBase%Properties%Conductivity)) &

+ (LOG(ThisInsulationCell%OuterRadius / ThisInsulationCell%RadialCentroid) / &

(2 * PI * Depth(ThisCell) * ThisInsulationCell%MyBase%Properties%Conductivity))

Numerator = Numerator + (Beta / Resistance) * NextInnerRadialCell%MyBase%Temperature

Denominator = Denominator + (Beta / Resistance)

!’add effects from pipe cell

Resistance = (LOG(ThisInsulationCell%RadialCentroid / ThisInsulationCell%InnerRadius) / &

(2 * PI * Depth(ThisCell) * ThisInsulationCell%MyBase%Properties%Conductivity)) &

+ (LOG(PipeCell%OuterRadius / PipeCell%RadialCentroid) / &

(2 * PI * Depth(ThisCell) * PipeCell%MyBase%Properties%Conductivity))

Numerator = Numerator + (Beta / Resistance) * PipeCell%MyBase%Temperature

Denominator = Denominator + (Beta / Resistance)

!’calculate the new temperature

ThisCell%PipeCellData%Insulation%MyBase%Temperature = Numerator / Denominator

END SUBROUTINE

SUBROUTINE SimulateRadialPipeCell(ThisCell , FlowRate , ConvectionCoefficient)

TYPE(CartesianCell), INTENT(IN OUT) :: ThisCell

REAL(r64), INTENT(IN) :: FlowRate

REAL(r64), INTENT(IN) :: ConvectionCoefficient

!’placeholder variables

REAL(r64) :: Numerator

REAL(r64) :: Denominator

REAL(r64) :: Resistance

REAL(r64) :: Beta

REAL(r64) :: PipeConductionResistance

REAL(r64) :: ConvectiveResistance

TYPE(RadialCellInformation) :: ThisPipeCell

TYPE(RadialCellInformation) :: OuterNeighborRadialCell

TYPE(FluidCellInformation) :: FluidCell

Numerator = 0.0d0

Denominator = 0.0d0

Resistance = 0.0d0

!’convenience variables

ThisPipeCell = ThisCell%PipeCellData%Pipe

IF (Has%Insulation) THEN

OuterNeighborRadialCell = ThisCell%PipeCellData%Insulation

ELSE

OuterNeighborRadialCell = ThisCell%PipeCellData%Soil (0)

END IF

FluidCell = ThisCell%PipeCellData%Fluid

!’any broadly defined variables

Beta = ThisPipeCell%MyBase%Beta

!’add effects from this cell history

Numerator = Numerator + ThisPipeCell%MyBase%Temperature_PrevTimeStep

Denominator = Denominator + 1

!’add effects from outer radial cell
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Resistance = (LOG(OuterNeighborRadialCell%RadialCentroid / OuterNeighborRadialCell%InnerRadius) / (2 * PI

* Depth(ThisCell) * OuterNeighborRadialCell%MyBase%Properties%Conductivity)) &

+ (LOG(ThisPipeCell%OuterRadius / ThisPipeCell%RadialCentroid) / (2 * PI * Depth(ThisCell) *

ThisPipeCell%MyBase%Properties%Conductivity))

Numerator = Numerator + (Beta / Resistance) * OuterNeighborRadialCell%MyBase%Temperature

Denominator = Denominator + (Beta / Resistance)

!’add effects from water cell

PipeConductionResistance = LOG(ThisPipeCell%RadialCentroid / ThisPipeCell%InnerRadius) / (2 * PI * Depth(

ThisCell) * ThisPipeCell%MyBase%Properties%Conductivity)

ConvectiveResistance = 1 / (ConvectionCoefficient * 2 * PI * ThisPipeCell%InnerRadius * Depth(ThisCell))

Resistance = PipeConductionResistance + ConvectiveResistance

Numerator = Numerator + (Beta / Resistance) * FluidCell%MyBase%Temperature

Denominator = Denominator + (Beta / Resistance)

!’calculate new temperature

ThisCell%PipeCellData%Pipe%MyBase%Temperature = Numerator / Denominator

END SUBROUTINE

SUBROUTINE SimulateFluidCell(ThisCell , FlowRate , ConvectionCoefficient , EnteringFluidTemp)

TYPE(CartesianCell), INTENT(IN OUT) :: ThisCell

REAL(r64), INTENT(IN) :: FlowRate

REAL(r64), INTENT(IN) :: ConvectionCoefficient

REAL(r64), INTENT(IN) :: EnteringFluidTemp

!’placeholder variables

REAL(r64) :: Numerator

REAL(r64) :: Denominator

REAL(r64) :: TotalPipeResistance

REAL(r64) :: PipeConductionResistance

REAL(r64) :: ConvectiveResistance

REAL(r64) :: UpstreamResistance

REAL(r64) :: EnteringFluidConductance

TYPE(FluidCellInformation) :: ThisFluidCell

TYPE(RadialCellInformation) :: PipeCell

Numerator = 0.0d0

Denominator = 0.0d0

!’convenience variables

ThisFluidCell = ThisCell%PipeCellData%Fluid

PipeCell = ThisCell%PipeCellData%Pipe

!’add effects from this cell history

Numerator = Numerator + ThisFluidCell%MyBase%Temperature_PrevTimeStep

Denominator = Denominator + 1

!’add effects from outer pipe cell

PipeConductionResistance = LOG(PipeCell%RadialCentroid / PipeCell%InnerRadius) / &

(2 * PI * Depth(ThisCell) * PipeCell%MyBase%Properties%Conductivity)

ConvectiveResistance = 1 / (ConvectionCoefficient * 2 * PI * PipeCell%InnerRadius * Depth(ThisCell))

TotalPipeResistance = PipeConductionResistance + ConvectiveResistance

Numerator = Numerator + (1 / TotalPipeResistance) * PipeCell%MyBase%Temperature

Denominator = Denominator + (1 / TotalPipeResistance)

!’add effects from upstream flow

EnteringFluidConductance = 0.0d0

IF (FlowRate > 0.0d0) THEN

UpstreamResistance = 1 / (FlowRate * ThisFluidCell%Properties%MyBase%SpecificHeat)

EnteringFluidConductance = ( (1/ UpstreamResistance) - (0.5* TotalPipeResistance) )

Numerator = Numerator + EnteringFluidConductance * EnteringFluidTemp

Denominator = Denominator + EnteringFluidConductance

END IF

!’calculate new temperature

ThisCell%PipeCellData%Fluid%MyBase%Temperature = Numerator / Denominator

END SUBROUTINE

SUBROUTINE DoOneTimeInitializations ()

INTEGER :: X, Y, Z, rCtr

INTEGER :: NX , NY , NZ

INTEGER :: SegCtr , SegIndex

TYPE(PipeSegmentInfo) :: Segment

INTEGER :: StartingZ

INTEGER :: EndingZ

INTEGER :: Increment

INTEGER :: ZIndex

INTEGER :: PipeX , PipeY

INTEGER :: PrevUbound

TYPE(Point3DInteger), ALLOCATABLE , DIMENSION (:) :: PrevEntries

TYPE(CartesianCell) :: NeighborCell

REAL(r64) :: NeighborTemp

REAL(r64) :: Resistance

REAL(r64) :: Beta

TYPE(CartesianCell) :: ThisCell

TYPE(RadialCellInformation) :: RadialCell

INTEGER :: DirectionCtr

INTEGER :: CurDirection
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REAL(r64) :: Dummy = 0.0d0

INTEGER :: TotalSegments

INTEGER :: SegCtr2

REAL(r64) :: ThisCellTemp

!’initialize cell properties

DO Z = 0, UBOUND(Cells , 3)

DO Y = 0, UBOUND(Cells , 2)

DO X = 0, UBOUND(Cells , 1)

SELECT CASE (Cells(X, Y, Z)%CellType)

CASE (CellType_Pipe)

Cells(X, Y, Z)%MyBase%Properties = GroundProperties

DO rctr = 0, UBOUND(Cells(X, Y, Z)%PipeCellData%Soil , 1)

Cells(X, Y, Z)%PipeCellData%Soil(rctr)%MyBase%Properties = GroundProperties

END DO

Cells(X, Y, Z)%PipeCellData%Pipe%MyBase%Properties = PipeProperties

IF (Has%Insulation) THEN

Cells(X, Y, Z)%PipeCellData%Insulation%MyBase%Properties = InsulationProperties

END IF

CASE (CellType_GeneralField , CellType_GroundSurface , CellType_AdiabaticWall ,

CellType_FarfieldBoundary)

Cells(X, Y, Z)%MyBase%Properties = GroundProperties

CASE (CellType_BasementWall)

Cells(X, Y, Z)%MyBase%Properties%Conductivity = BasementZone%BasementWall%MyBase%

Conductivity

Cells(X, Y, Z)%MyBase%Properties%Density = BasementZone%BasementWall%MyBase%Density

Cells(X, Y, Z)%MyBase%Properties%SpecificHeat = BasementZone%BasementWall%MyBase%

SpecificHeat

CASE (CellType_BasementFloor , CellType_BasementCorner)

Cells(X, Y, Z)%MyBase%Properties%Conductivity = BasementZone%BasementFloor%MyBase%

Conductivity

Cells(X, Y, Z)%MyBase%Properties%Density = BasementZone%BasementFloor%MyBase%Density

Cells(X, Y, Z)%MyBase%Properties%SpecificHeat = BasementZone%BasementFloor%MyBase%

SpecificHeat

CASE (CellType_BasementCutaway)

!shouldn ’t have to do anything ...

END SELECT

END DO

END DO

END DO

!’calculate one -time resistance terms for cartesian cells

DO Z = 0, UBOUND(Cells , 3)

DO Y = 0, UBOUND(Cells , 2)

DO X = 0, UBOUND(Cells , 1)

CALL EvaluateCellNeighborDirections(Cells(X, Y, Z))

DO DirectionCtr = 0, UBOUND(NeighborFieldCells ,1)

CurDirection = NeighborFieldCells(DirectionCtr)

CALL EvaluateNeighborCharacteristics(Cells(X, Y, Z), CurDirection , NeighborTemp ,

Resistance , NX , NY, NZ)

CALL SetAdditionalNeighborData(X, Y, Z, CurDirection , Resistance , Cells(NX , NY, NZ))

END DO

END DO

END DO

END DO

!’create circuit array for convenience

IF (Has%PipeCircuit) THEN

SegCtr2 = -1

TotalSegments = SIZE(Cells , 3) * SIZE(PipeCircuit%PipeSegments)

ALLOCATE(PipeCircuit%ListOfCircuitPoints (0: TotalSegments -1))

DO SegIndex = LBOUND(PipeCircuit%PipeSegments ,1), UBOUND(PipeCircuit%PipeSegments ,1)

Segment = PipeCircuit%PipeSegments(SegIndex)

!’set simulation flow direction

SELECT CASE (Segment%FlowDirection)

CASE (SegmentFlow_IncreasingZ)

StartingZ = 0

EndingZ = UBOUND(Cells ,3)

Increment = 1

CASE (SegmentFlow_DecreasingZ)

StartingZ = UBOUND(Cells ,3)

EndingZ = 0

Increment = -1

END SELECT

PipeX = Segment%PipeCellCoordinates%X

PipeY = Segment%PipeCellCoordinates%Y

!’loop across all z-direction indeces

DO Zindex = StartingZ , EndingZ , Increment

SegCtr2 = SegCtr2 + 1

PipeCircuit%ListOfCircuitPoints(SegCtr2) = Point3DInteger(PipeX , PipeY , Zindex)

END DO

END DO

END IF
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!’initialize freezing calculation variables

CALL EvaluateSoilRhoCp(Dummy , Dummy , .TRUE.)

!’we can also initialize the domain based on the farfield temperature here

!likely not necessary to also init history terms here , but certainly cannot hurt!

DO Z = 0, UBOUND(Cells , 3)

DO Y = 0, UBOUND(Cells , 2)

DO X = 0, UBOUND(Cells , 1)

!On OneTimeInit , the cur sim time should be zero , so this will be OK

ThisCellTemp = GetFarfieldTemp(Cells(X, Y, Z))

Cells(X, Y, Z)%MyBase%Temperature = ThisCellTemp

Cells(X, Y, Z)%MyBase%Temperature_PrevIteration = ThisCellTemp

Cells(X, Y, Z)%MyBase%Temperature_PrevTimeStep = ThisCellTemp

IF (Cells(X, Y, Z)%CellType == CellType_Pipe) THEN

DO rctr = 0, UBOUND(Cells(X, Y, Z)%PipeCellData%Soil , 1)

Cells(X, Y, Z)%PipeCellData%Soil(rctr)%MyBase%Temperature = ThisCellTemp

Cells(X, Y, Z)%PipeCellData%Soil(rctr)%MyBase%Temperature_PrevIteration =

ThisCellTemp

Cells(X, Y, Z)%PipeCellData%Soil(rctr)%MyBase%Temperature_PrevTimeStep = ThisCellTemp

END DO

Cells(X, Y, Z)%PipeCellData%Pipe%MyBase%Temperature = ThisCellTemp

Cells(X, Y, Z)%PipeCellData%Pipe%MyBase%Temperature_PrevIteration = ThisCellTemp

Cells(X, Y, Z)%PipeCellData%Pipe%MyBase%Temperature_PrevTimeStep = ThisCellTemp

IF (Has%Insulation) THEN

Cells(X, Y, Z)%PipeCellData%Insulation%MyBase%Temperature = ThisCellTemp

Cells(X, Y, Z)%PipeCellData%Insulation%MyBase%Temperature_PrevIteration =

ThisCellTemp

Cells(X, Y, Z)%PipeCellData%Insulation%MyBase%Temperature_PrevTimeStep = ThisCellTemp

END IF

Cells(X, Y, Z)%PipeCellData%Fluid%MyBase%Temperature = ThisCellTemp

Cells(X, Y, Z)%PipeCellData%Fluid%MyBase%Temperature_PrevIteration = ThisCellTemp

Cells(X, Y, Z)%PipeCellData%Fluid%MyBase%Temperature_PrevTimeStep = ThisCellTemp

END IF

END DO

END DO

END DO

END SUBROUTINE

SUBROUTINE DoStartOfTimeStepInitializations ()

!TYPE( CartesianCell ), POINTER :: CellToCheck

!TYPE( RadialCellInformation ), POINTER :: PipeCell

TYPE(RadialCellInformation) :: RadialCell

!TYPE( FluidCellInformation ), POINTER :: WaterCell

REAL(r64) :: EnteringTemp

REAL(r64) :: ExitingTemp

REAL(r64) :: AverageTemp

REAL(r64) :: Density

REAL(r64) :: Viscosity

REAL(r64) :: Conductivity

REAL(r64) :: SpecificHeat

REAL(r64) :: Prandtl

REAL(r64) :: Area_c

REAL(r64) :: Velocity

REAL(r64) :: Reynolds

REAL(r64) :: Exponent

REAL(r64) :: Nusselt

REAL(r64) :: ConvCoefficient

INTEGER :: X, Y, Z

REAL(r64) :: Temperature

REAL(r64) :: Beta

REAL(r64) :: CellTemp

REAL(r64) :: CellRhoCp

INTEGER :: radialctr

INTEGER :: rCtr

!Call this to update current sim time , time step size , etc.

CALL UpdateTransientConditions ()

!’pipe circuit conditions

IF (Has%PipeCircuit) THEN

PipeCircuit%CurFluidPropertySet = ExtendedFluidProperties( BaseThermalPropertySet(

CurFluidConductivity , CurFluidDensity , CurFluidSpecificHeat), CurFluidViscosity ,

CurFluidViscosity)

END IF

!’now update cell properties

!IF (Has%Moisture) THEN

IF (DoingFreezing) THEN

DO Z = LBOUND(Cells ,3), UBOUND(Cells ,3)

DO Y = LBOUND(Cells ,2), UBOUND(Cells ,2)

DO X = LBOUND(Cells ,1), UBOUND(Cells ,1)

!’since the cell properties are instantiated separately , we can now just set the Cp value

easily here without all the reallocation hackyness

SELECT CASE(Cells(X, Y, Z)%CellType)
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CASE(CellType_GeneralField , CellType_AdiabaticWall , CellType_FarfieldBoundary ,

CellType_GroundSurface)

!’main ground cells , update with soil properties

CellTemp = Cells(X, Y, Z)%MyBase%Temperature

CALL EvaluateSoilRhoCp(CellTemp , CellRhoCp)

Cells(X, Y, Z)%MyBase%Properties%SpecificHeat = CellRhoCp / Cells(X, Y, Z)%MyBase%

Properties%Density

CASE(CellType_BasementCorner , CellType_BasementCutAway , CellType_BasementFloor ,

CellType_BasementWall)

!’basement cells , for now they have constant properties

CASE(CellType_Pipe)

!’first update the outer cell itself

CellTemp = Cells(X, Y, Z)%MyBase%Temperature

CALL EvaluateSoilRhoCp(CellTemp , CellRhoCp)

Cells(X, Y, Z)%MyBase%Properties%SpecificHeat = CellRhoCp / Cells(X, Y, Z)%MyBase%

Properties%Density

!’then update all the soil radial cells

DO radialctr = LBOUND(Cells(X,Y,Z)%PipeCellData%Soil ,1), UBOUND(Cells(X,Y,Z)%

PipeCellData%Soil ,1)

CellTemp = Cells(X, Y, Z)%PipeCellData%Soil(radialctr)%MyBase%Temperature

CALL EvaluateSoilRhoCp(CellTemp , CellRhoCp)

Cells(X, Y, Z)%PipeCellData%Soil(radialctr)%MyBase%Properties%SpecificHeat =

CellRhoCp / Cells(X, Y, Z)%PipeCellData%Soil(radialctr)%MyBase%Properties%

Density

END DO

END SELECT

END DO

END DO

END DO

END IF

!’calculate the beta values for all cells

DO Z = 0, UBOUND(Cells , 3)

DO Y = 0, UBOUND(Cells , 2)

DO X = 0, UBOUND(Cells , 1)

SELECT CASE (Cells(X, Y, Z)%CellType)

CASE (CellType_Pipe)

!’set the interface cell

Beta = CurSimTimeStepSize / (Cells(X, Y, Z)%MyBase%Properties%Density * Cells(X, Y, Z)%

PipeCellData%InterfaceVolume * Cells(X, Y, Z)%MyBase%Properties%SpecificHeat)

Cells(X, Y, Z)%MyBase%Beta = Beta

!’set the radial soil cells

DO rctr = 0, UBOUND(Cells(X, Y, Z)%PipeCellData%Soil ,1)

RadialCell = Cells(X, Y, Z)%PipeCellData%Soil(rctr)

Beta = CurSimTimeStepSize / (RadialCell%MyBase%Properties%Density *

RadialCellInfo_XY_CrossSectArea(RadialCell) * Depth(Cells(X, Y, Z)) * RadialCell

%MyBase%Properties%SpecificHeat)

Cells(X, Y, Z)%PipeCellData%Soil(rctr)%MyBase%Beta = Beta

END DO

!’then insulation if it exists

IF (Has%Insulation) THEN

RadialCell = Cells(X, Y, Z)%PipeCellData%Insulation

Beta = CurSimTimeStepSize / (RadialCell%MyBase%Properties%Density *

RadialCellInfo_XY_CrossSectArea(RadialCell) * Depth(Cells(X, Y, Z)) * RadialCell

%MyBase%Properties%SpecificHeat)

Cells(X, Y, Z)%PipeCellData%Insulation%MyBase%Beta = Beta

END IF

!’set the pipe cell

RadialCell = Cells(X, Y, Z)%PipeCellData%Pipe

Beta = CurSimTimeStepSize / (RadialCell%MyBase%Properties%Density *

RadialCellInfo_XY_CrossSectArea(RadialCell) * Depth(Cells(X, Y, Z)) * RadialCell%

MyBase%Properties%SpecificHeat)

Cells(X, Y, Z)%PipeCellData%Pipe%MyBase%Beta = Beta

!’since water cells now have variable properties , we need to init their values during

each time step , not "one -time" here

IF (Has%PipeCircuit) THEN

IF (Cells(X, Y, Z)%CellType == CellType_Pipe) THEN

Temperature = Cells(X, Y, Z)%PipeCellData%Fluid%MyBase%Temperature

Cells(X, Y, Z)%PipeCellData%Fluid%Properties = PipeCircuit%CurFluidPropertySet

Cells(X, Y, Z)%PipeCellData%Fluid%MyBase%Beta = &

CurSimTimeStepSize / (Cells(X, Y, Z)%PipeCellData%Fluid%Properties%MyBase%

Density * Cells(X, Y, Z)%PipeCellData%Fluid%Volume * Cells(X, Y, Z)%

PipeCellData%Fluid%Properties%MyBase%SpecificHeat)

END IF

END IF

CASE (CellType_BasementCutAway)

!’this area is not calculated either , so no properties

CASE DEFAULT

!’these are basic cartesian calculation cells

Beta = CurSimTimeStepSize / (Cells(X, Y, Z)%MyBase%Properties%Density * Volume(Cells(X, Y

, Z)) * Cells(X, Y, Z)%MyBase%Properties%SpecificHeat)

Cells(X, Y, Z)%MyBase%Beta = Beta

END SELECT
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END DO

END DO

END DO

END SUBROUTINE

SUBROUTINE DoEndOfIterationOperations(IterationIndex , Finished , ErrorsFound)

INTEGER , INTENT(IN) :: IterationIndex

LOGICAL , INTENT(IN OUT) :: Finished

LOGICAL , INTENT(IN OUT) :: ErrorsFound

REAL(r64) :: MaxDivergence_FromLastIteration

TYPE(CartesianCell) :: MaxUnconvergedCell

LOGICAL :: Converged_FromLastIteration

LOGICAL :: OutOfRange

!’check if we have converged for this iteration if we are doing implicit transient

Converged_FromLastIteration = IsConverged_CurrentToPrevIteration(MaxDivergence_FromLastIteration)

!’check for out of range temperatures here so they aren ’t plotted

!’this routine should be *much* more restrictive than the exceptions , so we should be safe with this

location

OutOfRange = CheckForOutOfRangeTemps ()

IF (OutOfRange) THEN

ErrorsFound = .TRUE.

END IF

!’if we are doing implicit transient and we are converged in the iteration loop then we can leave the

iteration loop

IF (Converged_FromLastIteration) THEN

Finished = .TRUE.

END IF

END SUBROUTINE

SUBROUTINE EvaluateSoilRhoCp(CellTemp , rhoCp , InitOnly)

REAL(r64), INTENT(IN) :: CellTemp

REAL(r64), INTENT(OUT) :: rhoCp

LOGICAL , INTENT(IN), OPTIONAL :: InitOnly

!’static variables only calculated once per simulation run

REAL(r64), SAVE :: Theta_ice

REAL(r64), SAVE :: Theta_liq

REAL(r64), SAVE :: Theta_sat

REAL(r64), SAVE :: rho_ice

REAL(r64), SAVE :: rho_liq

REAL(r64), SAVE :: rhoCp_soil_liq_1

REAL(r64), SAVE :: CP_liq

REAL(r64), SAVE :: CP_ice

REAL(r64), SAVE :: Lat_fus

REAL(r64), SAVE :: Cp_transient

REAL(r64), SAVE :: rhoCP_soil_liq

REAL(r64), SAVE :: rhoCP_soil_transient

REAL(r64), SAVE :: rhoCP_soil_ice

REAL(r64) :: frzAllIce

REAL(r64) :: frzIceTrans

REAL(r64) :: frzLiqTrans

REAL(r64) :: frzAllLiq

REAL(r64) :: rhoCP_soil

IF (PRESENT(InitOnly)) THEN

!’Cp (freezing) calculations

Theta_ice = 0.3

Theta_liq = 0.3 !’moisture content of the soil

Theta_sat = 0.5

rho_ice = 917 !’Kg / m3

rho_liq = 1000 !’kg / m3

rhoCp_soil_liq_1 = 1225000.0 / (1 - Theta_sat) !’J/m3K

!’from (" An improved model for predicting soil thermal conductivity from water content at room

temperature , Fig 4")

CP_liq = 4180.0 !’J / KgK

CP_ice = 2066.0 !’J / KgK

Lat_fus = 334000 !’J / Kg

Cp_transient = Lat_fus / 0.4 + (0.5 * CP_ice - (CP_liq + CP_ice) / 2 * 0.1) / 0.4

!’from (" Numerical and experimental investigation of melting and freezing processes in phase change

material storage ")

rhoCP_soil_liq = rhoCp_soil_liq_1 * (1 - Theta_sat) + rho_liq * CP_liq * Theta_liq

rhoCP_soil_transient = rhoCp_soil_liq_1 * (1 - Theta_sat) + (( rho_liq + rho_ice)/2.0d0) *

Cp_transient * Theta_ice

rhoCP_soil_ice = rhoCp_soil_liq_1 * (1 - Theta_sat) + rho_ice * CP_ice * Theta_ice ! ’!J / m3K

RETURN

END IF

!’set some temperatures here for generalization -- these will be set in the input file

frzAllIce = -0.5

frzIceTrans = -0.4

frzLiqTrans = -0.1

frzAllLiq = 0.0
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!’calculate this cell ’s new Cp value based on the cell temperature

IF (CellTemp >= frzAllLiq) THEN

rhoCP_soil = rhoCp_soil_liq_1

ELSE IF (CellTemp <= frzAllIce) THEN

rhoCP_soil = rhoCP_soil_ice

ELSE IF (( CellTemp < frzAllLiq) .AND. (CellTemp > frzLiqTrans)) THEN

rhoCP_soil = rhoCp_soil_liq_1 + (rhoCP_soil_transient - rhoCP_soil_liq) / (frzAllLiq - frzLiqTrans) *

(frzAllLiq - CellTemp)

ELSE IF (( CellTemp <= frzLiqTrans) .AND. (CellTemp >= frzIceTrans)) THEN

rhoCP_soil = rhoCP_soil_transient

ELSE IF (( CellTemp < frzIceTrans) .AND. (CellTemp > frzAllIce)) THEN

rhoCP_soil = rhoCP_soil_transient + (rhoCP_soil_transient - rhoCP_soil_ice) / (frzIceTrans -

frzAllIce) * (CellTemp - frzAllIce)

End If

rhoCp = rhoCP_soil

END SUBROUTINE

SUBROUTINE SetAdditionalNeighborData(X, Y, Z, Direction , Resistance , NeighborCell)

INTEGER , INTENT(IN) :: X, Y, Z

INTEGER , INTENT(IN) :: Direction

REAL(r64), INTENT(IN) :: Resistance

TYPE(CartesianCell), INTENT(IN) :: NeighborCell

INTEGER :: NeighborIndex

DO NeighborIndex = 0, UBOUND(Cells(X, Y, Z)%NeighborInformation ,1)

IF (Cells(X, Y, Z)%NeighborInformation(NeighborIndex)%Direction == Direction) THEN

Cells(X, Y, Z)%NeighborInformation(NeighborIndex)%Value%ConductionResistance = Resistance

Cells(X, Y, Z)%NeighborInformation(NeighborIndex)%Value%NeighborCellIndeces = Point3DInteger(

NeighborCell%X_index , NeighborCell%Y_index , NeighborCell%Z_index)

END IF

END DO

END SUBROUTINE

SUBROUTINE EvaluateNeighborCharacteristics(ThisCell , CurDirection , NeighborTemp , Resistance , NeighborX ,

NeighborY , NeighborZ)

TYPE(CartesianCell), INTENT(IN) :: ThisCell

INTEGER , INTENT(IN) :: CurDirection

REAL(r64), INTENT(OUT) :: NeighborTemp

REAL(r64), INTENT(OUT) :: Resistance

INTEGER , INTENT(OUT), OPTIONAL :: NeighborX

INTEGER , INTENT(OUT), OPTIONAL :: NeighborY

INTEGER , INTENT(OUT), OPTIONAL :: NeighborZ

REAL(r64) :: ThisCellLength

REAL(r64) :: NeighborCellLength

REAL(r64) :: ThisCellConductivity

REAL(r64) :: NeighborConductivity

REAL(r64) :: ThisNormalArea

REAL(r64) :: ConvectiveResistance

TYPE(NeighborInformation) :: TempNeighborInfo

INTEGER :: CellWidthsUbound

INTEGER :: NX , NY , NZ

INTEGER :: X, Y, Z

X = ThisCell%X_index

Y = ThisCell%Y_index

Z = ThisCell%Z_index

!’get neighbor data

SELECT CASE (CurDirection)

CASE (Direction_PositiveY)

NX = X

NY = Y + 1

NZ = Z

CASE (Direction_NegativeY)

NX = X

NY = Y - 1

NZ = Z

CASE (Direction_PositiveX)

NX = X + 1

NY = Y

NZ = Z

CASE (Direction_NegativeX)

NX = X - 1

NY = Y

NZ = Z

CASE (Direction_PositiveZ)

NX = X

NY = Y

NZ = Z + 1

CASE (Direction_NegativeZ)

NX = X

NY = Y

NZ = Z - 1

END SELECT

!’split effects between the two cells so we can carefully calculate resistance values
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ThisCellLength = 0.0d0

NeighborCellLength = 0.0d0

ThisCellConductivity = HUGE (1.0d0)

IF (ThisCell%MyBase%Properties%Conductivity > 0.0d0) ThisCellConductivity = ThisCell%MyBase%Properties%

Conductivity

NeighborConductivity = HUGE (1.0d0)

IF (Cells(NX, NY, NZ)%MyBase%Properties%Conductivity > 0.0d0) NeighborConductivity = Cells(NX , NY , NZ)%

MyBase%Properties%Conductivity

!’calculate normal surface area

ThisNormalArea = NormalArea(ThisCell , CurDirection)

!’set distance based on cell types

TempNeighborInfo = NeighborInformationArray_Value(ThisCell%NeighborInformation , CurDirection)

IF (ThisCell%CellType == CellType_Pipe) THEN

!’we need to be a bit careful with pipes , as they are full centroid to centroid in the z direction ,

!’ but only centroid to wall in the x and y directions

IF (CurDirection == Direction_NegativeZ .OR. CurDirection == Direction_PositiveZ) THEN

ThisCellLength = TempNeighborInfo%ThisCentroidToNeighborWall

NeighborCellLength = TempNeighborInfo%ThisWallToNeighborCentroid

ELSE

ThisCellLength = 0

NeighborCellLength = TempNeighborInfo%ThisWallToNeighborCentroid

END IF

ELSE IF (Cells(NX, NY, NZ)%CellType == CellType_Pipe) THEN

ThisCellLength = TempNeighborInfo%ThisCentroidToNeighborWall

NeighborCellLength = 0

ELSE IF (Cells(NX, NY , NZ)%CellType == CellType_BasementCutAway) THEN

ThisCellLength = TempNeighborInfo%ThisCentroidToNeighborWall

NeighborCellLength = 0

ELSE

ThisCellLength = TempNeighborInfo%ThisCentroidToNeighborWall

NeighborCellLength = TempNeighborInfo%ThisWallToNeighborCentroid

END IF

!’also set any convective resistance

ConvectiveResistance = 0.0d0

IF (Cells(NX, NY, NZ)%CellType == CellType_BasementCutAway) THEN

IF (ThisCell%CellType == CellType_BasementWall) THEN

ConvectiveResistance = 1 / (BasementWallConvCoeff * ThisNormalArea)

ELSE IF (ThisCell%CellType == CellType_BasementFloor) THEN

ConvectiveResistance = 1 / (BasementFloorConvCoeff * ThisNormalArea)

END IF

END IF

!’calculate resistance based on different conductivities between the two cells

Resistance = (ThisCellLength / (ThisNormalArea * ThisCellConductivity)) + &

(NeighborCellLength / (ThisNormalArea * NeighborConductivity)) + &

ConvectiveResistance

!’return proper temperature for the given simulation type

IF (Cells(NX, NY, NZ)%CellType == CellType_BasementCutAway) THEN

NeighborTemp = BasementTemp

ELSE

NeighborTemp = Cells(NX , NY , NZ)%MyBase%Temperature

END IF

IF (PRESENT(NeighborX)) THEN

NeighborX = NX

NeighborY = NY

NeighborZ = NZ

END IF

END SUBROUTINE

SUBROUTINE EvaluateCellNeighborDirections(cell)

TYPE(CartesianCell), INTENT(IN) :: cell

INTEGER :: Xmax , Ymax , Zmax

INTEGER :: Xindex , Yindex , Zindex

INTEGER :: NumFieldCells , NumBoundaryCells

INTEGER :: FieldCellCtr , BoundaryCellCtr

INTEGER , PARAMETER :: TotalNumDimensions = 6

Xmax = UBOUND(Cells ,1)

Ymax = UBOUND(Cells ,2)

Zmax = UBOUND(Cells ,3)

Xindex = cell%X_index

Yindex = cell%Y_index

Zindex = cell%Z_index

! Initialize the counters

NumFieldCells = 0

NumBoundaryCells = 0

!First get the count for each array

IF(Xindex < Xmax) NumFieldCells = NumFieldCells + 1

IF(Xindex > 0) NumFieldCells = NumFieldCells + 1

IF(Yindex < Ymax) NumFieldCells = NumFieldCells + 1

IF(Yindex > 0) NumFieldCells = NumFieldCells + 1

IF(Zindex < Zmax) NumFieldCells = NumFieldCells + 1

IF(Zindex > 0) NumFieldCells = NumFieldCells + 1

NumBoundaryCells = TotalNumDimensions - NumFieldCells
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!Allocate the arrays

IF (ALLOCATED(NeighborFieldCells)) DEALLOCATE(NeighborFieldCells)

ALLOCATE(NeighborFieldCells (0: NumFieldCells -1))

IF (ALLOCATED(NeighborBoundaryCells)) DEALLOCATE(NeighborBoundaryCells)

ALLOCATE(NeighborBoundaryCells (0: NumBoundaryCells -1))

!Then add to each array appropriately

FieldCellCtr = -1

BoundaryCellCtr = -1

IF(Xindex < Xmax) THEN

FieldCellCtr = FieldCellCtr + 1

NeighborFieldCells(FieldCellCtr) = Direction_PositiveX

ELSE

BoundaryCellCtr = BoundaryCellCtr + 1

NeighborBoundaryCells(BoundaryCellCtr) = Direction_PositiveX

END IF

IF(Xindex > 0) THEN

FieldCellCtr = FieldCellCtr + 1

NeighborFieldCells(FieldCellCtr) = Direction_NegativeX

ELSE

BoundaryCellCtr = BoundaryCellCtr + 1

NeighborBoundaryCells(BoundaryCellCtr) = Direction_NegativeX

END IF

IF(Yindex < Ymax) THEN

FieldCellCtr = FieldCellCtr + 1

NeighborFieldCells(FieldCellCtr) = Direction_PositiveY

ELSE

BoundaryCellCtr = BoundaryCellCtr + 1

NeighborBoundaryCells(BoundaryCellCtr) = Direction_PositiveY

END IF

IF(Yindex > 0) THEN

FieldCellCtr = FieldCellCtr + 1

NeighborFieldCells(FieldCellCtr) = Direction_NegativeY

ELSE

BoundaryCellCtr = BoundaryCellCtr + 1

NeighborBoundaryCells(BoundaryCellCtr) = Direction_NegativeY

END IF

IF(Zindex < Zmax) THEN

FieldCellCtr = FieldCellCtr + 1

NeighborFieldCells(FieldCellCtr) = Direction_PositiveZ

ELSE

BoundaryCellCtr = BoundaryCellCtr + 1

NeighborBoundaryCells(BoundaryCellCtr) = Direction_PositiveZ

END IF

IF(Zindex > 0) THEN

FieldCellCtr = FieldCellCtr + 1

NeighborFieldCells(FieldCellCtr) = Direction_NegativeZ

ELSE

BoundaryCellCtr = BoundaryCellCtr + 1

NeighborBoundaryCells(BoundaryCellCtr) = Direction_NegativeZ

END IF

END SUBROUTINE

SUBROUTINE UpdateTransientConditions ()

!Timestep Dry Bulb RH Wind Speed Solar Rad

TYPE TransientDataPoint

REAL(r64) :: TimeStamp !Seconds

!REAL(r64) :: CircuitFlowRate !not used in UGT validation

REAL(r64) :: DryBulb

!REAL(r64) :: CircuitEFT !not used in UGT validation

!REAL(r64) :: BasementAirTemp !not used in UGT validation

REAL(r64) :: RelativeHumidity

REAL(r64) :: WindSpeed

REAL(r64) :: IncidentSolar

!REAL(r64) :: CircuitHPHeatAddedToFluid !not used in validation

END TYPE

LOGICAL :: EndOfFile

INTEGER :: Pos

INTEGER :: LineLength

LOGICAL , SAVE :: OneTimeInit = .TRUE.

CHARACTER(LEN =200) ReadLine

CHARACTER(LEN =50), DIMENSION (5) :: Tokens

INTEGER :: PrevUbound

INTEGER :: IOStatus

INTEGER :: DataPointCtr

INTEGER :: PreviousTimeStamp

REAL(r64) :: CurTimeStamp

TYPE(TransientDataPoint), DIMENSION (0:40000) :: TempTransientData

TYPE(TransientDataPoint), ALLOCATABLE , DIMENSION (:), SAVE :: TransientData

TYPE(TransientDataPoint) :: TempDataPoint

!The first time through we need to get the transient data from the file

288



IF (OneTimeInit) THEN

WRITE (*,*) ’Reading TransientData_UGT.csv data file ...’

OPEN(81, FILE=’TransientData_UGT.csv’, ERR =2980)

EndOfFile = .FALSE.

DataPointCtr = -1

DO WHILE (.NOT. EndOfFile)

READ(81, ’(A)’, IOSTAT=IOStatus) ReadLine

IF (IOStatus .NE. 0) EXIT

IF (LEN_TRIM(ADJUSTL(ReadLine)) > 1) THEN

IF (ReadLine (1:1)=="!" .OR. ReadLine (2:2) =="!") CYCLE

END IF

DataPointCtr = DataPointCtr + 1

!Read TimeStamp

ReadLine = ADJUSTL(ReadLine)

Pos = SCAN(ReadLine , ’,’)

READ(ReadLine (1:Pos -1), ’(A)’) Tokens (1)

LineLength = LEN(ReadLine)

ReadLine = ReadLine(Pos +1: LineLength)

!Read Dry Bulb

ReadLine = ADJUSTL(ReadLine)

Pos = SCAN(ReadLine , ’,’)

READ(ReadLine (1:Pos -1), ’(A)’) Tokens (2)

LineLength = LEN(ReadLine)

ReadLine = ReadLine(Pos +1: LineLength)

!Read Relative Humidity

ReadLine = ADJUSTL(ReadLine)

Pos = SCAN(ReadLine , ’,’)

READ(ReadLine (1:Pos -1), ’(A)’) Tokens (3)

LineLength = LEN(ReadLine)

ReadLine = ReadLine(Pos +1: LineLength)

!Read Wind Speed

ReadLine = ADJUSTL(ReadLine)

Pos = SCAN(ReadLine , ’,’)

READ(ReadLine (1:Pos -1), ’(A)’) Tokens (4)

LineLength = LEN(ReadLine)

ReadLine = ReadLine(Pos +1: LineLength)

! !Read Circuit Flow Rate

! ReadLine = ADJUSTL(ReadLine)

! Pos = SCAN(ReadLine , ’,’)

! READ(ReadLine (1:Pos -1) , ’(A) ’) Tokens (5)

! LineLength = LEN(ReadLine)

! ReadLine = ReadLine(Pos +1: LineLength )

!

! !Read Circuit HP Q (Heat added to FHX fluid)

! ReadLine = ADJUSTL(ReadLine)

! Pos = SCAN(ReadLine , ’,’)

! READ(ReadLine (1:Pos -1) , ’(A) ’) Tokens (6)

! LineLength = LEN(ReadLine)

! ReadLine = ReadLine(Pos +1: LineLength )

!Read Solar Radiation

ReadLine = ADJUSTL(ReadLine)

READ(ReadLine , ’(A)’) Tokens (5)

!Now process all the tokens into numeric data

READ(Tokens (1), *) TempDataPoint%TimeStamp

READ(Tokens (2), *) TempDataPoint%DryBulb

READ(Tokens (3), *) TempDataPoint%RelativeHumidity

READ(Tokens (4), *) TempDataPoint%WindSpeed

READ(Tokens (5), *) TempDataPoint%IncidentSolar

!READ(Tokens (6) , *) TempDataPoint % CircuitHPHeatAddedToFluid

!READ(Tokens (7) , *) TempDataPoint % BasementAirTemp

TempTransientData(DataPointCtr) = TempDataPoint

! IF (. NOT. ALLOCATED ( TransientData )) THEN

! ALLOCATE( TransientData (0:0))

! TransientData (0) = TempDataPoint

! ELSE

! PrevUbound = UBOUND(TransientData , 1)

! IF ( ALLOCATED ( TempTransientData )) DEALLOCATE ( TempTransientData )

! ALLOCATE( TempTransientData (0: PrevUbound ))

! TempTransientData (0: PrevUbound ) = TransientData

! DEALLOCATE ( TransientData )

! ALLOCATE( TransientData (0: PrevUbound +1))

! TransientData (0: PrevUbound ) = TempTransientData

! TransientData ( PrevUbound +1) = TempDataPoint

! DEALLOCATE ( TempTransientData )

! END IF

!IF (REAL(SIZE( TransientData ))/250.0 d0 == INT(REAL(SIZE( TransientData ))/250.0 d0)) THEN

! WRITE (*, *) "Found ", DataPointCtr , " data points ... so far ..."
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!END IF

END DO

IF (ALLOCATED(TransientData)) DEALLOCATE(TransientData) !Should NOT be necessary , but safe

ALLOCATE(TransientData (0: DataPointCtr))

TransientData = TempTransientData (0: DataPointCtr)

!we are done reading , make sure we close the file if it is open

2950 CLOSE (81)

WRITE(*, *) "Interpreted ", SIZE(TransientData), " data points"

OneTimeInit = .FALSE.

END IF

! Interpolate and set weather conditions

PreviousTimeStamp = 0.0d0

DO DataPointCtr = LBOUND(TransientData ,1), UBOUND(TransientData ,1)

TempDataPoint = TransientData(DataPointCtr)

CurTimeStamp = TempDataPoint%TimeStamp

IF (( CurSimTimeSeconds > PreviousTimeStamp .AND. CurSimTimeSeconds <= CurTimeStamp) &

.OR. (DataPointCtr == UBOUND(TransientData ,1))) THEN

CurAirTemp = TempDataPoint%DryBulb

CurWindSpeed = TempDataPoint%WindSpeed

CurRelativeHumidity = TempDataPoint%RelativeHumidity

CurIncidentSolar = TempDataPoint%IncidentSolar

! CurCircuitFlowRate = TempDataPoint % CircuitFlowRate

! BasementTemp = TempDataPoint % BasementAirTemp

! CurCircuitHeatPumpQ = TempDataPoint % CircuitHPHeatAddedToFluid

EXIT

END IF

PreviousTimeStamp = CurTimeStamp

END DO

RETURN

! ErrHandler

2980 CONTINUE

WRITE(*, ’(A100)’) ’Could not find TransientData.csv ... aborting ... press ENTER to exit ...’

READ(*, *)

STOP

END SUBROUTINE

END MODULE
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APPENDIX C

Transport Delay Testbed Source

Listing C.1: Transport Delay Testbed Source: Manager

!!This program will perform varying levels of transport delay calculations

! This work authored by Edwin Lee , at Oklahoma State University

! ___ _ ____ _ _

! / _ \| | __/ ___ || |_ __ _| |_ ___

!| | | | |/ /\ ___ \| __/ _‘ | __/ _ \

!| |_| | < ___) | || (_| | || __/

! \___ /|_|\_\| ____/ \__\__ ,_|\__\___|

!ToDo: improved boundary condition spec , not just pipe outer temperature ... or maybe this is OK

! laminar & heating/cooling nusselt correlations

!Info: implementing time variant flow would require variable segment length , so this is not done

! well -mixed adiabatic demonstrates the inherent steady state nature of the well -mixed model

! There are basically three features to transport delay:

! - mixing within a segment

! - heat transfer from the segment to the boundary condition

! - and transient storage within the segment

! begin program!

program transportdelay

! use the enumeration definitions

use enumerations

! access any utilities

use transportdelay_utilities

! access data structure

use structures

! enforce explicit declarations

implicit none

! ================================================== |

! = = = VARIABLES DERIVED DIRECTLY FROM INPUTS = = = |

! -------------------------------------------------- |

!~TYPE ~~||~~~~~~~~~ VAR NAME ~~~~~~~~~~|~~~~ UNITS ~~~~~~|

! -------------------------------------------------- |

real :: segment_length ! [m] --------- |

real :: pipe_cross_sectional_area ! [m2] -------- |

real :: fluid_volume_flow_rate ! [m3/s] ------ |

real :: fluid_velocity ! [m/s] ------- |

real :: segment_residence_time ! [s] --------- |

real :: pipe_residence_time ! [s] --------- |

real :: time_step ! [s] --------- |

integer :: num_time_steps ! [-] --------- |

real :: segment_surface_area ! [m2] -------- |

real :: segment_out_surface_area ! [m2] -------- |

real :: fluid_mass_in_a_segment ! [kg] -------- |

real :: time_heatpump_cutoff ! [s] --------- |

! ================================================== |

! = = = = = = = = = = = = = = GENERAL VARIABLES = = = = = = = = = = = = = = = = = = |

! ~~~~~~~~~ VAR TYPE ~~~~~~~~~||~~~~~~~~ VAR NAME ~~~~~~~~~~~~~|~~ INITVAL ~~|~~~ UNITS ~~~~~|

type(fluid_segment), & ! ---------------------------------------------------------- |

dimension (:), allocatable :: fluid_segments ! ----------- | (main variable: array of

fluid segments)

real , & ! ---------------------------------------------------------- |

dimension (:), allocatable :: segmentTemps_prevTime ! ----------- | (main variable: array of

fluid segment temps at previous time step)

integer :: fluid_segment_index ! [-] ------- | (counter for segment loops)

character(len =30) :: fmt_csvoutput ! ----------- | (a fortran format spec for

outputting csv style data)

real :: pipe_entering_temp ! [C] ------- | (the inlet temp of the pipe

for a time step)

real :: segment_entering_temp ! [C] ------- | (the temperature of fluid

entering this segment)

real :: this_segment_temperature ! [C] ------- | (the temperature of the

current segment at the previous timestep)

real :: mixed_temperature ! [C] ------- | (for mixed flow , this is

the mixed temperature , before any heat transfer calcs)
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real :: current_time ! [s] ------- | (the current time of the

simulation at the end of this time step)

real :: fluid_reynoldsnumber ! [-] ------- | (for heat transfer calcs ,

this represents the Reynolds number for current flow)

real :: fluid_nusseltNumber ! [-] ------- | (for heat transfer calcs ,

this represents the Nusselt number for current flow)

real :: fluid_convectioncoefficient ! [W/m2 -K] -- | (for heat transfer calcs ,

this represents the fluid to pipe inner wall convection coefficient )

real :: UA ! [W/K] ----- | (for heat transfer calcs ,

this represents the conductance from fluid to pipe outer wall)

real :: resistance ! [m2 -K/W] -- | (for heat transfer calcs ,

this represents the resistance per surf area from fluid to pipe outer wall)

real :: mass_coming_in_to_segment ! [kg] ------ | (the amount of fluid mass

that will be entering this segment from upstream)

real , dimension (4) :: A ! -varies ---- | ( coefficients of fluid heat

balance equation)

real , dimension (4) :: B ! -varies ---- | ( coefficients of pipe heat

balance equation)

real :: FluidNodeHeatCapacity ! -???------- | (heat capacity of fluid

portion of a segment)

real :: PipeHeatCapacity ! -???------- | (heat capacity of pipe

portion of a segment)

real :: EnvHeatTransCoef ! -???------- | (outer convection

coefficient of pipe ... high value for type 1 boundary)

character(len=4) :: s_index ! ----------- | (string placeholder for

writing indeces)

integer :: time_step_counter ! ----------- | (simple counter for keeping

track of time step index)

character(len =30) :: s_inputs ! ----------- | ( placeholder for a input

file command line argument)

real :: expon ! [-] ------- | (Nusselt correlation

exponent)

real , dimension (-3:-1) :: model_temp ! [C] ------- | (stores the temperature

calculated by each model type)

! spew

write(*,’(A)’) "--- Simulation starting! ---"

! spew a useful output file using the default values -- only if we aren ’t already using one!

call get_command_argument(number=1, value=s_inputs)

if (len_trim(s_inputs)==0) then

! must not have had a CL argument

call write_overridables(simData)

end if

! override with environment variables

call process_environment_variables(simData)

! override with input file -- this is more localized since the input file must be specified on the command line

call process_input_file(simData)

! read in boundary EFT data if applicable

if (simData%circtype == circtype_boundaryEFT) then

call process_boundaryEFT_file ()

end if

! read in boundary Q data if applicable

if (simData%heatpumptesttype == testtype_boundaryFile) then

call process_boundaryHPQ_file ()

end if

! allocate once we know the final number of segments (after overrides )

allocate(fluid_segments(simData%num_segments))

allocate(segmentTemps_prevTime(simData%num_segments))

! once input has been read and overridden , calculate the derived parameters

segment_length = simData%total_pipe_length / simData%num_segments

pipe_cross_sectional_area = (PI /4.0) * (simData%pipe_inner_diameter **2)

fluid_volume_flow_rate = simData%fluid_mass_flow_rate / simData%fluid_density

fluid_velocity = fluid_volume_flow_rate / pipe_cross_sectional_area

segment_residence_time = segment_length / fluid_velocity

pipe_residence_time = simData%total_pipe_length / fluid_velocity

time_step = pipe_residence_time / simData%num_segments

num_time_steps = simData%max_time / time_step

segment_surface_area = PI * simData%pipe_inner_diameter * segment_length

segment_out_surface_area = PI * simData%pipe_outer_diameter * segment_length

fluid_mass_in_a_segment = simData%fluid_density * pipe_cross_sectional_area * segment_length

time_heatpump_cutoff = pipe_residence_time / 2.0

! initialize segment temperatures and names

fluid_segments%temperature = simData%initial_fluid_temp

do fluid_segment_index = 1, simData%num_segments

write (s_index , ’(I4)’) fluid_segment_index

fluid_segments(fluid_segment_index)%name = ’Segment ’//trim(adjustl(s_index))

end do

! open the output file

open(file_csvfluidtemps , file=’segment_temps.csv’)

! write the header row format

write(fmt_csvoutput , ’(a,i4 ,a)’ ) ’(’, simData%num_segments +2, ’(a12 ,","))’

write(file_csvfluidtemps , fmt_csvoutput) ’time’, ’inlet temp’, fluid_segments%name
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! create the output format for data rows (re -use format variable)

write(fmt_csvoutput , ’(a,i4 ,a)’ ) ’(’, simData%num_segments +2, ’(f10.4,","))’

! initialize the current time counter to 0 since it is at the beginning of the DO loop now

current_time = 0

time_step_counter = 0

! initialize the pipe entering temperature to the system here

if (simData%circtype == circtype_boundaryEFT) then

pipe_entering_temp = get_boundaryEFT(current_time)

else

pipe_entering_temp = simData%entering_fluid_temp

end if

! until further development , assign coefficients here:

if ( abs(sum(simData%model_coef) - 1.0) > 0.01 ) then

call issuefatal(’Mixing model coefficients do not sum to 1’)

end if

! loop over time until the current time reaches the maximum simulation time

do while (current_time <= simData%max_time)

! increment counter

time_step_counter = time_step_counter + 1

! update current time for the next time step

current_time = current_time + time_step

! store temperatures - keep in mind this stores the ’outlet ’ temperature of each segment , so the

pipe_entering_temp isn ’t disrupted

segmentTemps_prevTime = fluid_segments%temperature

! initialize the entering temp for the next time step

if (simData%circtype == circtype_simpleRecirc) then

! don ’t add heat

pipe_entering_temp = fluid_segments(simData%num_segments)%temperature

elseif (simData%circtype == circtype_heatpump) then

if (simData%heatpumptesttype == testtype_impulse .and. current_time > time_heatpump_cutoff) then

! don ’t add heat

pipe_entering_temp = fluid_segments(simData%num_segments)%temperature

else

! do add heat in all other cases (although heat added could be zero ...)

if (simData%heatpumptesttype == testtype_boundaryFile) then

! use the scheduled heat addition value to override the nominal entered rate

simData%Q_heatpump = get_boundaryQ(current_time)

end if

pipe_entering_temp = fluid_segments(simData%num_segments)%temperature + simData%Q_heatpump / (simData

%fluid_mass_flow_rate * simData%fluid_specific_heat)

if (( time_step_counter/simData%report_frequency) == (real(time_step_counter)/real(simData%

report_frequency)) .or. time_step_counter == num_time_steps .or. time_step_counter ==1) then

write(*,’("Heat added=", F8.3, "; PipeOutletTemp =", F8.3, "; NewPipeInletTemp =", F8.3)’) simData%

Q_heatpump , fluid_segments(simData%num_segments)%temperature , pipe_entering_temp

end if

end if

else if (simData%circtype == circtype_boundaryEFT) then

! the entering temp is scheduled

pipe_entering_temp = get_boundaryEFT(current_time)

end if

! calculate the convection coefficient if we are doing heat transfer calcs

if (simData%heattransfertype /= heattransfertype_adiabatic) then

fluid_reynoldsnumber = simData%pipe_inner_diameter * fluid_velocity / simData%fluid_kinematic_visc

!if ( pipe_outer_surface_temp >= pipe_entering_temp ) then ! heating

expon = 0.4

!else ! cooling

! expon = 0.5

!end if

fluid_nusseltNumber = 0.023 * (fluid_reynoldsnumber ** 0.8) * (simData%fluid_prandtl ** expon)

fluid_convectioncoefficient = fluid_nusseltNumber * simData%fluid_conductivity / simData%

pipe_inner_diameter

resistance = (1.0 / fluid_convectioncoefficient) + (log(simData%pipe_outer_diameter/simData%

pipe_inner_diameter) / (2 * PI * simData%pipe_conductivity * segment_length))

UA = (1 / resistance) * segment_surface_area

end if

! loop over all fluid segements

do fluid_segment_index = 1, simData%num_segments

! get segment entering temp

segment_entering_temp = get_segment_entering_temp(segmentTemps_prevTime , fluid_segment_index ,

pipe_entering_temp)

! store this segment temperature

this_segment_temperature = fluid_segments(fluid_segment_index)%temperature

! ******* Calculate plug flow temperature ******* !

if (simData%heattransfertype == heattransfertype_adiabatic) then

model_temp(modeltype_plugflow) = segment_entering_temp

elseif (simData%heattransfertype == heattransfertype_pipeouterboundary) then

model_temp(modeltype_plugflow) = segment_entering_temp + (UA / (fluid_mass_in_a_segment*simData%

fluid_specific_heat)) * (simData%pipe_outer_surface_temp - segment_entering_temp)

end if
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! ******* Calculate well -mixed temperature ******* !

! calculate incoming mass and mass already in the segment

mass_coming_in_to_segment = simData%fluid_mass_flow_rate * time_step

! calculate a mixed temperature

mixed_temperature = (mass_coming_in_to_segment * segment_entering_temp + fluid_mass_in_a_segment *

this_segment_temperature) / (mass_coming_in_to_segment + fluid_mass_in_a_segment)

! do mixing calculation , either adiabatic or with heat transfer

if (simData%heattransfertype == heattransfertype_adiabatic) then

model_temp(modeltype_wellmixedsegments) = mixed_temperature

elseif (simData%heattransfertype == heattransfertype_pipeouterboundary) then

model_temp(modeltype_wellmixedsegments) = mixed_temperature + (UA / (fluid_mass_in_a_segment*simData%

fluid_specific_heat)) * (simData%pipe_outer_surface_temp - mixed_temperature)

end if

! ******* Calculate Hanby temperature ******* !

! coef of fluid heat balance

FluidNodeHeatCapacity = pipe_cross_sectional_area * segment_length * simData%fluid_specific_heat *

simData%fluid_density ! Mass of Node x Specific heat

A(1) = FluidNodeHeatCapacity + simData%fluid_mass_flow_rate * simData%fluid_specific_heat * time_step +

fluid_convectioncoefficient * segment_surface_area * time_step

A(2) = simData%fluid_mass_flow_rate * simData%fluid_specific_heat * time_step

A(3) = fluid_convectioncoefficient * segment_surface_area * time_step

A(4) = FluidNodeHeatCapacity

! coef of pipe heat balance

PipeHeatCapacity = simData%pipe_specific_heat * simData%pipe_density * (pi * 0.25 * simData%

pipe_outer_diameter **2 - pipe_cross_sectional_area)

EnvHeatTransCoef = 100000.0 ! to simulate a temperature boundary

B(1) = PipeHeatCapacity + fluid_convectioncoefficient * segment_surface_area * time_step +

EnvHeatTransCoef * segment_out_surface_area * time_step

B(2) = A(3)

B(3) = EnvHeatTransCoef * segment_out_surface_area * time_step

B(4) = PipeHeatCapacity

! use the Hanby expression (energy balance)

model_temp(modeltype_hanby) = (A(2) * segment_entering_temp + A(3)/B(1) * (B(3)* simData%

pipe_outer_surface_temp + B(4) * simData%pipe_outer_surface_temp) + A(4) * this_segment_temperature)

/(A(1)-A(3)*B(2)/B(1))

! ******* Calculate final weighted temperature ******* ! (a dot product of coef and temp arrays)

fluid_segments(fluid_segment_index)%temperature = sum(simData%model_coef * model_temp)

end do

! flush output

write(file_csvfluidtemps , fmt_csvoutput) current_time , pipe_entering_temp , fluid_segments%temperature

! report if desired

if (( time_step_counter/simData%report_frequency) == (real(time_step_counter)/real(simData%report_frequency))

.or. time_step_counter == num_time_steps .or. time_step_counter ==1) then

write(*,’("Just finished time step #", I8, "/", I8)’) time_step_counter , num_time_steps

end if

end do ! time step while loop

! we are done!

write(*,’(A)’) "--- Simulation complete! ---"

! close the output file

close(file_csvfluidtemps)

! end program

end program
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Listing C.2: Transport Delay Testbed Source: Data Structures
!This module contains data structures and minimal variables declared here

module structures

! use the enumeration definitions

use enumerations

! everything must be explicitly declared

implicit none

! everything is public here

public

! =================================================================== |

! = = = = = = = = = = = = GLOBAL PARAMETERS = = = = = = = = = = = = = |

! ------------------------------------------------------------------- |

!~~~~~ VAR TYPE ~~~~~||~~~~~~~~ VAR NAME ~~~~~~~~~|~~ VALUE ~~~~~~~~~~~~~~~~|

! ------------------------------------------------------------------- |

! -------------------------------OTHER ------------------------------- |

real , parameter :: PI = 3.14159 ! ----------- |

real , parameter :: initVal = -99999. ! ----------- |

! -----------------------------FILE UNIT NUMBERS --------------------- |

integer , parameter :: file_csvfluidtemps = 28 ! ----------- |

integer , parameter :: file_boundaryEFT = 30 ! ----------- |

integer , parameter :: file_inputs = 32 ! ----------- |

integer , parameter :: file_overrides = 34 ! ----------- |

integer , parameter :: file_boundaryQ = 36 ! ----------- |

! -------------------------------FILE NAMES -------------------------- |

character(len =15), parameter :: s_boundaryEFT = ’boundaryEFT.csv’ ! - |

character(len =15), parameter :: s_boundaryQ = ’boundaryQ.csv’ ! --- |

! =================================================================== |

! = = = = = = = = = = = = = = = = = MAIN SIMULATION DATA STRUCTURE = = = = = = = = = = = = = = = = = = = |

type inputStruc

real :: initial_fluid_temp = 16.577 ! [C] ------ Approximated ------- |

! ---------------------------BOUNDARY CONDITIONS -------------------------------------------------------- |

real :: entering_fluid_temp = 16.577 ! [C] ------ Approximated ------- |

real :: pipe_outer_surface_temp = 16.577 ! [C] ------ Approximated ------- |

real :: fluid_mass_flow_rate = 0.29 ! [kg/s] --- Experimental Setup - |

! ---------------------------PIPE PARAMETERS ------------------------------------------------------------ |

real :: pipe_inner_diameter = 0.02154 ! [m] ------ 3/4" HDPE SDR 11 --- |

real :: pipe_outer_diameter = 0.02667 ! [m] ------ 3/4" HDPE SDR 11 --- |

real :: total_pipe_length = 121.92 ! [m] ------ Experimental setup - |

real :: pipe_conductivity = 0.45 ! [W/m-K] -- EngineeringToolbox - |

real :: pipe_specific_heat = 1950.0 ! [J/kg -K] - Matt --------------- |

real :: pipe_density = 950.0 ! [kg/m3] -- Matt --------------- |

! ---------------------------FLUID PARAMETERS ----------------------------------------------------------- |

real :: fluid_conductivity = 0.58 ! [W/m-K] -- EngineeringToolbox - |

real :: fluid_density = 997.8 ! [kg/m3] -- EngineeringToolbox - |

real :: fluid_specific_heat = 4187.0 ! [J/kg -K] - EngineeringToolbox - |

real :: fluid_kinematic_visc = 0.8e-6 ! [m2/s] --- EngineeringToolbox - |

real :: fluid_prandtl = 7.0 ! [-] ------ EngineeringToolbox - |

! ------------------------HEAT PUMP PARAMETERS (if any) ------------------------------------------------- |

real :: Q_heatpump = 3500.0 ! [W] ------ Experimental Setup - |

! ---------------------------SIMULATION PARAMETERS ------------------------------------------------------ |

integer :: num_segments = 20 ! [-] ------ Model Parameter ---- |

integer :: max_time = 1800 ! [s] ------ Model Parameter ---- |

integer :: report_frequency = 100 ! [timestep] Sim Parameter ------ |

! ---------------------------MIXING MODEL CONTRIBUTIONS ------------------------------------------------- |

real :: model_coef (-3:-1) = (/1.0, 0.0, 0.0/) ! [-] ------ Dim ’d to model #s -- |

! ---------------------------MODEL SETTINGS ------------------------------------------------------------- |

integer :: circtype = circtype_heatpump ! [-] --------------------------- |

integer :: heattransfertype = heattransfertype_adiabatic ! [-] --------------------------- |

integer :: heatpumptesttype = testtype_stepchange ! [-] --------------------------- |

end type

! ================================================================ |

! = = = = = = = = = DEFINITION OF A SINGLE SEGMENT = = = = = = = = |

type fluid_segment ! --------------------------------------------- |

! temperature is just past the inlet of the segment ---------- |

! all the way to including the oulet of the segment --------- |

real :: temperature = initVal ! ----------------- |

character(len =12) :: name =’XXXXXX ’ ! ----------------- |

end type ! ------------------------------------------------------- |

! ================================================================ |

! ================================================================ |

! = = = = = = = DEFINITION OF A BOUNDARY POINT IN TIME = = = = = = |

type transientPoint ! -------------------------------------------- |

real :: time_seconds = initVal ! ----------------------------- |

real :: boundary_val = initVal ! ----------------------------- |

end type ! ------------------------------------------------------- |

! ================================================================ |

! ==================================================================== |

! = = = = = = = = = ONLY A COUPLE INSTANCE VARIABLES = = = = = = = = = |

type(inputStruc) :: simData ! ---------------------------------------- |

type(transientPoint), dimension (:), allocatable :: boundaryEFTdata !-- |

type(transientPoint), dimension (:), allocatable :: boundaryHPQdata !-- |

! ==================================================================== |
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end module
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Listing C.3: Transport Delay Testbed Source: Enumerations
!This module contains enumerations and related utilities

module enumerations

! everything must be explicitly declared

implicit none

! everything is public here

public

! --------------VARIABLES -------------------------------------------- |

! -------------------------------MODEL TYPE ENUMERATION -------------- |

integer , parameter :: modeltype_plugflow = -1 ! ----------- |

integer , parameter :: modeltype_wellmixedsegments = -2 ! ----------- |

integer , parameter :: modeltype_hanby = -3 ! ----------- |

! ------------------------------- CIRCULATION TYPE ENUMERATION -------- |

integer , parameter :: circtype_heatpump = -1 ! ----------- |

integer , parameter :: circtype_simplerecirc = -2 ! ----------- |

integer , parameter :: circtype_boundaryEFT = -3 ! ----------- |

! -------------------------------HEAT TRANSFER TYPE ENUMERATION ------ |

integer , parameter :: heattransfertype_adiabatic = -1 ! ----------- |

integer , parameter :: heattransfertype_pipeouterboundary = -2 ! ----- |

! -------------------------------TEST TYPE ENUMERATION --------------- |

integer , parameter :: testtype_impulse = -1 ! ----------- |

integer , parameter :: testtype_stepchange = -2 ! ----------- |

integer , parameter :: testtype_boundaryFile = -3 ! ----------- |

! ------------------------------------------------------------------- |

! routine declarations

public get_circtype_int_from_string

public get_heattransfertype_int_from_string

public get_heatpumptesttype_int_from_string

public get_circtype_string_from_int

public get_heattransfertype_string_from_int

public get_heatpumptesttype_string_from_int

! actual routine code

contains

integer function get_circtype_int_from_string(s) result(circtype)

character(len=*), intent(in) :: s

select case (trim(s))

case (’HEATPUMP ’)

circtype = circtype_heatpump

case (’SIMPLERECIRC ’)

circtype = circtype_simplerecirc

case (’BOUNDARYEFT ’)

circtype = circtype_boundaryEFT

end select

end function

integer function get_heattransfertype_int_from_string(s) result(heattransfertype)

character(len=*), intent(in) :: s

select case (trim(s))

case (’ADIABATIC ’)

heattransfertype = heattransfertype_adiabatic

case (’PIPEOUTERBOUNDARY ’)

heattransfertype = heattransfertype_pipeouterboundary

end select

end function

integer function get_heatpumptesttype_int_from_string(s) result(heatpumptesttype)

character(len=*), intent(in) :: s

select case (trim(s))

case (’IMPULSE ’)

heatpumptesttype = testtype_impulse

case (’STEPCHANGE ’)

heatpumptesttype = testtype_stepchange

case (’BOUNDARYFILE ’)

heatpumptesttype = testtype_boundaryFile

end select

end function

character(len =20) function get_circtype_string_from_int(circtype) result(s)

integer , intent(in) :: circtype

select case (circtype)

case (circtype_heatpump)

s = ’HEATPUMP ’

case (circtype_simplerecirc)
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s = ’SIMPLERECIRC ’

case (circtype_boundaryEFT)

s = ’BOUNDARYEFT ’

end select

end function

character(len =20) function get_heattransfertype_string_from_int(heattransfertype) result(s)

integer , intent(in) :: heattransfertype

select case (heattransfertype)

case (heattransfertype_adiabatic)

s = ’ADIABATIC ’

case (heattransfertype_pipeouterboundary)

s = ’PIPEOUTERBOUNDARY ’

end select

end function

character(len =20) function get_heatpumptesttype_string_from_int(heatpumptesttype) result(s)

integer , intent(in) :: heatpumptesttype

select case (heatpumptesttype)

case (testtype_impulse)

s = ’IMPULSE ’

case (testtype_stepchange)

s = ’STEPCHANGE ’

case (testtype_boundaryFile)

s = ’BOUNDARYFILE ’

end select

end function

end module
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Listing C.4: Transport Delay Testbed Source: Utilities
module transportdelay_utilities

! allow use of data structures and global variables

use structures

! use the enumeration definitions

use enumerations

! explicitly declare everything !

implicit none

! all things private unless explicitly public

private

interface process_environment_variable

module procedure process_environment_variable_f

module procedure process_environment_variable_i

end interface

! scope specifications of routines in this module

public issuefatal

public get_segment_entering_temp

public process_environment_variables

public process_boundaryEFT_file

public process_boundaryHPQ_file

public process_input_file

public write_overridables

private to_upper

public get_boundaryEFT

public get_boundaryQ

! actual routine code

contains

subroutine issuefatal(s)

character(len =*), intent(in) :: s

write (*,*) ’*********************** ’

write (*,*) ’****** FATAL ERROR ****** ’

write (*,*) ’*********************** ’

write (*,*) s

write (*,*) ’*********************** ’

write (*,*) ’press ENTER to exit ...’

read (*,*)

call exit (1)

end subroutine

real function get_segment_entering_temp(fluid_segments , fluid_segment_index , pipe_entering_temp) result(

segment_entering_temp)

real , dimension (*), intent(in) :: fluid_segments

integer , intent(in) :: fluid_segment_index

real , intent(in) :: pipe_entering_temp

!get a fluid temperature for this one

if (fluid_segment_index ==1) then

segment_entering_temp = pipe_entering_temp

else

segment_entering_temp = fluid_segments(fluid_segment_index -1)

end if

end function

subroutine process_environment_variables(inputs)

type(inputStruc), intent(in out) :: inputs

character(len =40) :: tmp_env_variable_value ! --------- | (holds the string

retrieved from the env var)

integer :: var_stat

call process_environment_variable(’MODELCOEFHANBY ’, ’Hanby model mixing coefficient ’, inputs%model_coef(

modeltype_hanby))

call process_environment_variable(’MODELCOEFPLUGFLOW ’, ’Plug flow model mixing coefficient ’, inputs%

model_coef(modeltype_plugflow))

call process_environment_variable(’MODELCOEFWELLMIXED ’, ’Well -mixed model mixing coefficient ’, inputs%

model_coef(modeltype_wellmixedsegments))

call get_environment_variable(’CIRCTYPE ’, tmp_env_variable_value)

select case (trim(tmp_env_variable_value))

case (’HEATPUMP ’)

inputs%circtype = circtype_heatpump

write(*,’(A)’) "Environment Variable: Overrode circ type with HEATPUMP"

case (’SIMPLERECIRC ’)

inputs%circtype = circtype_simplerecirc

write(*,’(A)’) "Environment Variable: Overrode circ type with SIMPLERECIRC"

case (’BOUNDARYEFT ’)

299



inputs%circtype = circtype_boundaryEFT

write(*,’(A)’) "Environment Variable: Overrode circ type with BOUNDARYEFT"

end select

call get_environment_variable(’HEATTRANSFERTYPE ’, tmp_env_variable_value)

select case (trim(tmp_env_variable_value))

case (’ADIABATIC ’)

inputs%heattransfertype = heattransfertype_adiabatic

write(*,’(A)’) "Environment Variable: Overrode HT type with ADIABATIC"

case (’PIPEOUTERBOUNDARY ’)

inputs%heattransfertype = heattransfertype_pipeouterboundary

write(*,’(A)’) "Environment Variable: Overrode HT type with PIPEOUTERBOUNDARY"

end select

call get_environment_variable(’TESTTYPE ’, tmp_env_variable_value)

select case (trim(tmp_env_variable_value))

case (’IMPULSE ’)

inputs%heatpumptesttype = testtype_impulse

write(*,’(A)’) "Environment Variable: Overrode test type with IMPULSE"

case (’STEPCHANGE ’)

inputs%heatpumptesttype = testtype_stepchange

write(*,’(A)’) "Environment Variable: Overrode test type with STEPCHANGE"

case (’BOUNDARYFILE ’)

inputs%heatpumptesttype = testtype_boundaryFile

write(*,’(A)’) "Environment Variable: Overrode test type with BOUNDARYFILE"

end select

call process_environment_variable(’INITIAL_FLUID_TEMP ’, ’init fluid temp’, inputs%initial_fluid_temp)

call process_environment_variable(’ENTERING_FLUID_TEMP ’, ’entering fluid temp’, inputs%

entering_fluid_temp)

call process_environment_variable(’PIPE_OUTER_SURFACE_TEMP ’, ’pipe outer surface temp’, inputs%

pipe_outer_surface_temp)

call process_environment_variable(’FLUID_MASS_FLOW_RATE ’, ’fluid mass flow rate’, inputs%

fluid_mass_flow_rate)

call process_environment_variable(’PIPE_INNER_DIAMETER ’, ’pipe inner diameter ’, inputs%

pipe_inner_diameter)

call process_environment_variable(’PIPE_OUTER_DIAMETER ’, ’pipe outer diameter ’, inputs%

pipe_outer_diameter)

call process_environment_variable(’TOTAL_PIPE_LENGTH ’, ’total pipe length ’, inputs%total_pipe_length)

call process_environment_variable(’PIPE_CONDUCTIVITY ’, ’pipe conductivity ’, inputs%pipe_conductivity)

call process_environment_variable(’PIPE_SPECIFIC_HEAT ’, ’pipe specific heat’, inputs%pipe_specific_heat)

call process_environment_variable(’PIPE_DENSITY ’, ’pipe density ’, inputs%pipe_density)

call process_environment_variable(’FLUID_CONDUCTIVITY ’, ’fluid conductivity ’, inputs%fluid_conductivity)

call process_environment_variable(’FLUID_DENSITY ’, ’fluid density ’, inputs%fluid_density)

call process_environment_variable(’FLUID_SPECIFIC_HEAT ’, ’fluid specific heat’, inputs%

fluid_specific_heat)

call process_environment_variable(’FLUID_KINEMATIC_VISC ’, ’fluid kinematic viscosity ’, inputs%

fluid_kinematic_visc)

call process_environment_variable(’FLUID_PRANDTL ’, ’fluid prandtl ’, inputs%fluid_prandtl)

call process_environment_variable(’Q_HEATPUMP ’, ’heat addition ’, inputs%Q_heatpump)

call process_environment_variable(’NUM_SEGMENTS ’, ’number of segments ’, inputs%num_segments)

call process_environment_variable(’MAX_TIME ’, ’max simulation time’, inputs%max_time)

call process_environment_variable(’REPORT_FREQUENCY ’, ’reporting frequency ’, inputs%report_frequency)

end subroutine

subroutine process_environment_variable_f(varKey , varName , var)

character(len=*), intent(in) :: varKey

character(len=*), intent(in) :: varName

real , intent(inOut) :: var

integer :: var_stat

character(len =40) :: tmp_env_variable_value ! --------- | (holds the string

retrieved from the env var)

call get_environment_variable(varKey , tmp_env_variable_value , status=var_stat)

if (var_stat == 0) then

read(tmp_env_variable_value , *) var

write(*,’(" Environment Variable: Overrode ", A20 , " = ", F8.3)’) varName , var

end if

end subroutine

subroutine process_environment_variable_i(varKey , varName , var)

character(len=*), intent(in) :: varKey

character(len=*), intent(in) :: varName

integer , intent(inOut) :: var

integer :: var_stat

character(len =40) :: tmp_env_variable_value ! --------- | (holds the string

retrieved from the env var)

call get_environment_variable(varKey , tmp_env_variable_value , status=var_stat)

if (var_stat == 0) then

read(tmp_env_variable_value , *) var

write(*,’(" Environment Variable: Overrode ", A20 , " = ", I12)’) varName , var

end if

end subroutine

subroutine process_boundaryEFT_file ()
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! we will assume the file form is of the following :

! row 1: header

! rows 2-N: timestamp , temperature

! timestamp is in seconds , temperature is in celsius

! max line length = 200

integer , parameter :: maxrows = 1000000

integer :: Comma

integer :: LineLength

character(len =200) ReadLine

integer :: IOStatus

integer :: DataPointCtr

type(transientPoint), dimension (:), allocatable :: TEMP_boundaryEFTdata

! allocate the temp array

allocate(TEMP_boundaryEFTdata(maxrows))

! open the file for reading

open(file_boundaryEFT , file=s_boundaryEFT , err =2980)

! init the counter

DataPointCtr = -1

! start reading , line by line

do

! read the line

read(file_boundaryEFT , ’(A)’, iostat=IOStatus) ReadLine

! do counter things

DataPointCtr = DataPointCtr + 1

if (DataPointCtr == 0) cycle

if (DataPointCtr >= maxrows) exit ! something is wrong!

! check for errors

if (IOStatus .NE. 0) exit

! if this is a blank line , we are done here

if (len_trim(adjustl(ReadLine)) == 0) exit

!Read TimeStamp

ReadLine = ADJUSTL(ReadLine)

Comma = SCAN(ReadLine , ’,’)

read(ReadLine (1:Comma -1), *) TEMP_boundaryEFTdata(DataPointCtr)%time_seconds

LineLength = len(ReadLine)

ReadLine = ReadLine(Comma +1: LineLength)

!Read EFT

ReadLine = ADJUSTL(ReadLine)

Comma = SCAN(ReadLine , ’,’)

if (Comma /= 0) then

ReadLine = ReadLine (1:Comma -1)

end if

read(ReadLine , *) TEMP_boundaryEFTdata(DataPointCtr)%boundary_val

end do

! mop up duty

close(file_boundaryEFT)

! now allocate and assign the actual array

allocate(boundaryEFTdata(DataPointCtr -1))

boundaryEFTdata = TEMP_boundaryEFTdata (1: DataPointCtr -1)

! more mop up

deallocate(TEMP_boundaryEFTdata)

! return early to bypass the error handler

return

! ErrHandler

2980 CONTINUE

WRITE(*, ’(A)’) ’Could not find ’// s_boundaryEFT //’.. aborting ...’

STOP

end subroutine

subroutine process_boundaryHPQ_file ()

! we will assume the file form is of the following :

! row 1: header

! rows 2-N: timestamp , heatAdditionToLoop

! timestamp is in seconds , heatAdditionToLoop is in watts

! max line length = 200

integer , parameter :: maxrows = 1000000

integer :: Comma

integer :: LineLength

character(len =200) ReadLine

integer :: IOStatus
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integer :: DataPointCtr

type(transientPoint), dimension (:), allocatable :: TEMP_boundaryQdata

! allocate the temp array

allocate(TEMP_boundaryQdata(maxrows))

! open the file for reading

open(file_boundaryQ , file=s_boundaryQ , err =2980)

! init the counter

DataPointCtr = -1

! start reading , line by line

do

! read the line

read(file_boundaryQ , ’(A)’, iostat=IOStatus) ReadLine

! do counter things

DataPointCtr = DataPointCtr + 1

if (DataPointCtr == 0) cycle

if (DataPointCtr >= maxrows) exit ! something is wrong!

! check for errors

if (IOStatus .NE. 0) exit

! if this is a blank line , we are done here

if (len_trim(adjustl(ReadLine)) == 0) exit

!Read TimeStamp

ReadLine = ADJUSTL(ReadLine)

Comma = SCAN(ReadLine , ’,’)

read(ReadLine (1:Comma -1), *) TEMP_boundaryQdata(DataPointCtr)%time_seconds

LineLength = len(ReadLine)

ReadLine = ReadLine(Comma +1: LineLength)

!Read EFT

ReadLine = ADJUSTL(ReadLine)

Comma = SCAN(ReadLine , ’,’)

if (Comma /= 0) then

ReadLine = ReadLine (1:Comma -1)

end if

read(ReadLine , *) TEMP_boundaryQdata(DataPointCtr)%boundary_val

end do

! mop up duty

close(file_boundaryQ)

! now allocate and assign the actual array

allocate(boundaryHPQdata(DataPointCtr -1))

boundaryHPQdata = TEMP_boundaryQdata (1: DataPointCtr -1)

! more mop up

deallocate(TEMP_boundaryQdata)

! return early to bypass the error handler

return

! ErrHandler

2980 CONTINUE

WRITE(*, ’(A)’) ’Could not find ’// s_boundaryEFT //’.. aborting ...’

STOP

end subroutine

subroutine process_input_file(inputs)

type(inputStruc), intent(in out) :: inputs

! we will assume the file form is of the following :

! ! possible comments following exclamation points

! <blank lines are ignored >

! key = value

! key=value

! key =value !trailing comment

! max line length = 200

integer :: Equals

integer :: Exclamation

character(len =200) ReadLine

integer :: IOStatus

integer :: LineCtr

character(len =200) :: sKey

character(len =200) :: sValue

logical :: isthere

integer :: errStatus

character(len =30) :: s_inputs

call get_command_argument(number=1, value=s_inputs , status=errStatus)

if (len_trim(s_inputs)==0) then

! must not have had a CL argument

return
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else if (errStatus /= 0) then

! something went wrong , either s_inputs couldn ’t hold the string or something

write (*,*) ’problem with CL processing ’

end if

write(*,’(A)’) ’Command line argument (input file name) found: ’//trim(adjustl(s_inputs))

inquire(file=s_inputs , exist=isthere)

if (.not. isthere) then

write(*,’(A)’) ’ * Could not retrieve input file ... continuing without input file modifications!’

return

end if

! open the file for reading

open(file_inputs , file=s_inputs)

! init the counter

LineCtr = 0

! start reading , line by line

do

! do counter things

LineCtr = LineCtr + 1

! read the line

read(file_inputs , ’(A)’, iostat=IOStatus) ReadLine

! check for errors

if (IOStatus .NE. 0) exit

! if this is a blank line , cycle

if (len_trim(adjustl(ReadLine)) == 0) cycle

! remove leading spaces

ReadLine = trim(adjustl(ReadLine))

! check for exclamation , take everything left of it and adjustl/trim it

Exclamation = scan(ReadLine , ’!’)

if (Exclamation == 1) then

cycle !the first non - whitespace was an exclamation

else if (Exclamation /= 0) then

ReadLine = trim(adjustl(ReadLIne (1: Exclamation -1)))

end if

!Read Key

Equals = SCAN(ReadLine , ’=’)

READ(ReadLine (1:Equals -1), ’(A)’) sKey

call to_upper(sKey)

ReadLine = ReadLine(Equals +1:)

!Read Val

ReadLine = ADJUSTL(ReadLine)

READ(ReadLine , ’(A)’) sValue

call to_upper(sValue)

! process it

select case (trim(adjustl(sKey)))

case(’MODELCOEFHANBY ’)

read(sValue , *) inputs%model_coef(modeltype_hanby)

write(*,’("Input File: Overrode Hanby model mixing coefficient = ", F8.3)’) inputs%model_coef(

modeltype_hanby)

case(’MODELCOEFPLUGFLOW ’)

read(sValue , *) inputs%model_coef(modeltype_plugflow)

write(*,’("Input File: Overrode Plug flow model mixing coefficient = ", F8.3)’) inputs%model_coef

(modeltype_plugflow)

case(’MODELCOEFWELLMIXED ’)

read(sValue , *) inputs%model_coef(modeltype_wellmixedsegments)

write(*,’("Input File: Overrode Hanby model mixing coefficient = ", F8.3)’) inputs%model_coef(

modeltype_wellmixedsegments)

case (’CIRCTYPE ’)

select case (trim(adjustl(sValue)))

case (’HEATPUMP ’)

inputs%circtype = circtype_heatpump

case (’SIMPLERECIRC ’)

inputs%circtype = circtype_simplerecirc

case (’BOUNDARYEFT ’)

inputs%circtype = circtype_boundaryEFT

case default

call issuefatal(’Invalid value for input variable CIRCTYPE: ’//trim(adjustl(sValue)))

end select

write(*,’(A)’) ’Input File: Overrode circ type with: ’//trim(adjustl(sValue))

case (’HEATTRANSFERTYPE ’)

select case (trim(adjustl(sValue)))

case (’ADIABATIC ’)

inputs%heattransfertype = heattransfertype_adiabatic

case (’PIPEOUTERBOUNDARY ’)

inputs%heattransfertype = heattransfertype_pipeouterboundary

case default

call issuefatal(’Invalid value for input variable HEATTRANSFERTYPE: ’//trim(adjustl(sValue)))

end select

write(*,’(A)’) ’Input File: Overrode heat transfer type with: ’//trim(adjustl(sValue))

case (’HEATPUMPTESTTYPE ’)
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select case (trim(adjustl(sValue)))

case (’IMPULSE ’)

inputs%heatpumptesttype = testtype_impulse

case (’STEPCHANGE ’)

inputs%heatpumptesttype = testtype_stepchange

case (’BOUNDARYFILE ’)

inputs%heatpumptesttype = testtype_boundaryFile

case default

call issuefatal(’Invalid value for input variable HEATPUMPTESTTYPE: ’//trim(adjustl(sValue)))

end select

write(*,’(A)’) ’Input File: Overrode test type with: ’//trim(adjustl(sValue))

case (’INITIAL_FLUID_TEMP ’)

read(sValue , *) inputs%initial_fluid_temp

write(*,’("Input File: Overrode init fluid temp = ", F8.3)’) inputs%initial_fluid_temp

case (’ENTERING_FLUID_TEMP ’)

read(sValue , *) inputs%entering_fluid_temp

write(*,’("Input File: Overrode entering fluid temp = ", F8.3)’) inputs%entering_fluid_temp

case (’PIPE_OUTER_SURFACE_TEMP ’)

read(sValue , *) inputs%pipe_outer_surface_temp

write(*,’("Input File: Overrode pipe outer surface temp = ", F8.3)’) inputs%

pipe_outer_surface_temp

case (’FLUID_MASS_FLOW_RATE ’)

read(sValue , *) inputs%fluid_mass_flow_rate

write(*,’("Input File: Overrode fluid mass flow rate = ", F8.3)’) inputs%fluid_mass_flow_rate

case (’PIPE_INNER_DIAMETER ’)

read(sValue , *) inputs%pipe_inner_diameter

write(*,’("Input File: Overrode pipe inner diameter = ", F8.3)’) inputs%pipe_inner_diameter

case (’PIPE_OUTER_DIAMETER ’)

read(sValue , *) inputs%pipe_outer_diameter

write(*,’("Input File: Overrode pipe outer diameter = ", F8.3)’) inputs%pipe_outer_diameter

case (’TOTAL_PIPE_LENGTH ’)

read(sValue , *) inputs%total_pipe_length

write(*,’("Input File: Overrode total pipe length = ", F8.3)’) inputs%total_pipe_length

case (’PIPE_CONDUCTIVITY ’)

read(sValue , *) inputs%pipe_conductivity

write(*,’("Input File: Overrode pipe conductivity = ", F8.3)’) inputs%pipe_conductivity

case (’PIPE_SPECIFIC_HEAT ’)

read(sValue , *) inputs%pipe_specific_heat

write(*,’("Input File: Overrode pipe specific heat = ", F8.3)’) inputs%pipe_specific_heat

case (’PIPE_DENSITY ’)

read(sValue , *) inputs%pipe_density

write(*,’("Input File: Overrode pipe density = ", F8.3)’) inputs%pipe_density

case (’FLUID_CONDUCTIVITY ’)

read(sValue , *) inputs%fluid_conductivity

write(*,’("Input File: Overrode fluid conductivity = ", F8.3)’) inputs%fluid_conductivity

case (’FLUID_DENSITY ’)

read(sValue , *) inputs%fluid_density

write(*,’("Input File: Overrode fluid density = ", F8.3)’) inputs%fluid_density

case (’FLUID_SPECIFIC_HEAT ’)

read(sValue , *) inputs%fluid_specific_heat

write(*,’("Input File: Overrode fluid specific heat = ", F8.3)’) inputs%fluid_specific_heat

case (’FLUID_KINEMATIC_VISC ’)

read(sValue , *) inputs%fluid_kinematic_visc

write(*,’("Input File: Overrode fluid kinematic viscosity = ", F8.3)’) inputs%

fluid_kinematic_visc

case (’FLUID_PRANDTL ’)

read(sValue , *) inputs%fluid_prandtl

write(*,’("Input File: Overrode fluid prandtl number = ", F8.3)’) inputs%fluid_prandtl

case (’Q_HEATPUMP ’)

read(sValue , *) inputs%Q_heatpump

write(*,’("Input File: Overrode heat addition = ", F8.3)’) inputs%Q_heatpump

case (’NUM_SEGMENTS ’)

read(sValue , *) inputs%num_segments

write(*,’("Input File: Overrode number of segments = ", I12)’) inputs%num_segments

case (’MAX_TIME ’)

read(sValue , *) inputs%max_time

write(*,’("Input File: Overrode max simulation time = ", I12)’) inputs%max_time

case (’REPORT_FREQUENCY ’)

read(sValue , *) inputs%report_frequency

write(*,’("Input File: Overrode reporting frequency = ", I12)’) inputs%report_frequency

case default

call issuefatal(’Invalid input variable found in the input file: ’//trim(sValue))

end select

end do

! mop up duty

close(file_inputs)

end subroutine

subroutine write_overridables(simData)

type(inputStruc), intent(in) :: simData

character(len =100) :: tmpVar ! - temporary placeholder

integer , dimension (8) :: vals ! - holds date/time info

integer :: i ! - simple counter

open(file_overrides , file=’overrides.txt’)

call date_and_time(values=vals)
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write(file_overrides , ’("! Created at: ", I4, "-", I2, "-", I2, "  ", I2, ":", I2, ":", I2)’) vals (1),

vals (2), vals (3), vals (5), vals (6), vals (7)

write(file_overrides , ’("! This file contains all the keys that can be overridden in the program .")’)

write(file_overrides , ’("! They may be overridden using environment variables at the command line , using 

CAPITALs for the key .")’)

write(file_overrides , ’("! They may also be overridden using an input file approach .")’)

write(file_overrides , ’("!The input file name (path) is optionally passed to the program as the only 

command line argument .")’)

write(file_overrides , ’("!The input file format is flexible , using a KEY=value syntax , ’’!’’ characters 

allow trailing comments , and whitespace (except for newlines) is ignored .")’)

write(file_overrides , ’("!All of these variables have default parameters , so any may be overridden , but 

none have to be.")’)

write(file_overrides , ’("!In this file , the defaults are listed here , thus this file may be used directly

 as a *default* input file .")’)

write(file_overrides , ’ ’)

write(file_overrides , ’("! + + + Begin Variables + + + !")’)

write(file_overrides , ’ ’)

write(file_overrides , ’("  !!! Physical properties !!!  ")’)

write(tmpVar , *) simData%initial_fluid_temp

write(file_overrides ,’(" INITIAL_FLUID_TEMP =",A)’) trim(adjustl(tmpVar))

write(tmpVar , *) simData%entering_fluid_temp

write(file_overrides ,’(" ENTERING_FLUID_TEMP =",A,"     !- except in special cases , this should = 

INITIAL_FLUID_TEMP ")’) trim(adjustl(tmpVar))

write(tmpVar , *) simData%pipe_outer_surface_temp

write(file_overrides ,’(" PIPE_OUTER_SURFACE_TEMP =",A)’) trim(adjustl(tmpVar))

write(tmpVar , *) simData%fluid_mass_flow_rate

write(file_overrides ,’(" FLUID_MASS_FLOW_RATE =",A)’) trim(adjustl(tmpVar))

write(tmpVar , *) simData%pipe_inner_diameter

write(file_overrides ,’(" PIPE_INNER_DIAMETER =",A)’) trim(adjustl(tmpVar))

write(tmpVar , *) simData%pipe_outer_diameter

write(file_overrides ,’(" PIPE_OUTER_DIAMETER =",A)’) trim(adjustl(tmpVar))

write(tmpVar , *) simData%total_pipe_length

write(file_overrides ,’(" TOTAL_PIPE_LENGTH =",A)’) trim(adjustl(tmpVar))

write(tmpVar , *) simData%pipe_conductivity

write(file_overrides ,’(" PIPE_CONDUCTIVITY =",A)’) trim(adjustl(tmpVar))

write(tmpVar , *) simData%pipe_specific_heat

write(file_overrides ,’(" PIPE_SPECIFIC_HEAT =",A)’) trim(adjustl(tmpVar))

write(tmpVar , *) simData%pipe_density

write(file_overrides ,’(" PIPE_DENSITY =",A)’) trim(adjustl(tmpVar))

write(tmpVar , *) simData%fluid_conductivity

write(file_overrides ,’(" FLUID_CONDUCTIVITY =",A)’) trim(adjustl(tmpVar))

write(tmpVar , *) simData%fluid_density

write(file_overrides ,’(" FLUID_DENSITY =",A)’) trim(adjustl(tmpVar))

write(tmpVar , *) simData%fluid_specific_heat

write(file_overrides ,’(" FLUID_SPECIFIC_HEAT =",A)’) trim(adjustl(tmpVar))

write(tmpVar , *) simData%fluid_kinematic_visc

write(file_overrides ,’(" FLUID_KINEMATIC_VISC =",A)’) trim(adjustl(tmpVar))

write(tmpVar , *) simData%fluid_prandtl

write(file_overrides ,’(" FLUID_PRANDTL =",A)’) trim(adjustl(tmpVar))

write(tmpVar , *) simData%Q_heatpump

write(file_overrides ,’(" Q_HEATPUMP =",A,"     !- ignored if HEATPUMPTESTTYPE=BOUNDARYFILE ")’) trim(adjustl

(tmpVar))

write(file_overrides , ’ ’)

write(file_overrides , ’("  !!! Simulation properties !!!  ")’)

write(tmpVar , *) simData%num_segments

write(file_overrides ,’(" NUM_SEGMENTS =",A)’) trim(adjustl(tmpVar))

write(tmpVar , *) simData%max_time

write(file_overrides ,’(" MAX_TIME=",A)’) trim(adjustl(tmpVar))

write(tmpVar , *) simData%report_frequency

write(file_overrides ,’(" REPORT_FREQUENCY =",A)’) trim(adjustl(tmpVar))

write(file_overrides , ’ ’)

write(file_overrides , ’("  !!! MIXING MODEL CONTRIBUTIONS - MUST SUM TO 1.00 0 .01 !!!  ")’)

write(tmpVar , *) simData%model_coef(modeltype_hanby)

write(file_overrides ,’(" MODELCOEFHANBY =",A)’) trim(adjustl(tmpVar))

write(tmpVar , *) simData%model_coef(modeltype_plugflow)

write(file_overrides ,’(" MODELCOEFPLUGFLOW =",A)’) trim(adjustl(tmpVar))

write(tmpVar , *) simData%model_coef(modeltype_wellmixedsegments)

write(file_overrides ,’(" MODELCOEFWELLMIXED =",A)’) trim(adjustl(tmpVar))

write(file_overrides , ’ ’)

write(file_overrides , ’("  !!! LOOP CIRCULATION !!!  ")’)

write(file_overrides ,’(" CIRCTYPE=",A)’) trim(adjustl(get_circtype_string_from_int(simData%circtype)))

do i = -3, -1

if (i /= simData%circtype) write(file_overrides ,’("!- CIRCTYPE=",A)’) trim(adjustl(

get_circtype_string_from_int(i)))

end do

write(file_overrides , ’ ’)

write(file_overrides , ’("  !!! HEAT TRANSFER MODEL !!!  ")’)
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write(file_overrides ,’(" HEATTRANSFERTYPE =",A)’) trim(adjustl(get_heattransfertype_string_from_int(simData

%heattransfertype)))

do i = -2, -1

if (i /= simData%heattransfertype) write(file_overrides ,’("!- HEATTRANSFERTYPE =",A)’) trim(adjustl(

get_heattransfertype_string_from_int(i)))

end do

write(file_overrides , ’ ’)

write(file_overrides , ’("  !!! HEAT PUMP TEST APPROACH !!!  ")’)

write(file_overrides ,’(" HEATPUMPTESTTYPE =",A)’) trim(adjustl(get_heatpumptesttype_string_from_int(simData

%heatpumptesttype)))

do i = -3, -1

if (i /= simData%heatpumptesttype) write(file_overrides ,’("!- HEATPUMPTESTTYPE =",A)’) trim(adjustl(

get_heatpumptesttype_string_from_int(i)))

end do

write(file_overrides , ’ ’)

write(file_overrides , ’("! + + + End Variables + + + !")’)

close(file_overrides)

end subroutine

subroutine to_upper(str)

character (*), intent(in out) :: str

integer :: i

do i = 1, len(str)

select case(str(i:i))

case("a":"z")

str(i:i) = ACHAR(IACHAR(str(i:i)) -32)

end select

end do

end subroutine To_upper

real function get_boundaryEFT(current_time) result(EFT)

real , intent(in) :: current_time

integer :: i

! initialize to the first index

EFT = boundaryEFTdata (1)%boundary_val

! now loop over the array , and if we are at that timestamp or above , take the new time

do i = 1, size(boundaryEFTdata)

if (current_time >= boundaryEFTdata(i)%time_seconds) then

EFT = boundaryEFTdata(i)%boundary_val

end if

end do

end function

real function get_boundaryQ(current_time) result(Q)

real , intent(in) :: current_time

integer :: i

! initialize to the first index

Q = boundaryHPQdata (1)%boundary_val

! now loop over the array , and if we are at that timestamp or above , take the new time

do i = 1, size(boundaryHPQdata)

if (current_time >= boundaryHPQdata(i)%time_seconds) then

Q = boundaryHPQdata(i)%boundary_val

end if

end do

end function

end module
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